Solveeit Logo

Question

Question: If \(\sum_{k = 0}^{100}i^{k} = x + iy\) and \(x\) then value of k equals....

If k=0100ik=x+iy\sum_{k = 0}^{100}i^{k} = x + iy and xx then value of k equals.

A

2

B

4

C

6

D

1

Answer

4

Explanation

Solution

z=1+2i1iz = \frac{1 + 2i}{1 - i}

z=1+2i1i×1+i1+i\Rightarrow z = \frac{1 + 2i}{1 - i} \times \frac{1 + i}{1 + i}

=12+i32= \frac{- 1}{2} + i\frac{3}{2}

11cosθ+isinθ\frac{1}{1 - \cos\theta + i\sin\theta}

=1(1cosθ)+isinθ×(1cosθ)isinθ(1cosθ)isinθ=(1cosθ)isinθ(1cosθ)2+sin2θ= \frac{1}{(1 - \cos\theta) + i\sin\theta} \times \frac{(1 - \cos\theta) - i\sin\theta}{(1 - \cos\theta) - i\sin\theta} = \frac{(1 - \cos\theta) - i\sin\theta}{(1 - \cos\theta)^{2} + \sin^{2}\theta}

=(1cosθ)isinθ2(1cosθ)= \frac{(1 - \cos\theta) - i\sin\theta}{2(1 - \cos\theta)}

=(1cosθ)2(1cosθ)isinθ2(1cosθ).= \frac{(1 - \cos\theta)}{2(1 - \cos\theta)} - i\frac{\sin\theta}{2(1 - \cos\theta)}. 1cosθ2(1cosθ)=12\frac{1 - \cos\theta}{2(1 - \cos\theta)} = \frac{1}{2}.