Solveeit Logo

Question

Question: If sum of two unit vectors is also a unit vector, then magnitude of their difference and angle betwe...

If sum of two unit vectors is also a unit vector, then magnitude of their difference and angle between the two given unit vectors is:
A) 3,60\sqrt 3 ,60^\circ
B) 3,120\sqrt 3 ,120^\circ
C) 2,60\sqrt 2 ,60^\circ
D) 2,120\sqrt 2 ,120^\circ

Explanation

Solution

For any vector to be a unit vector, the modulus of the vector or the scalar component of the vector has to be 11 . Suppose the vector given in the question are a\overrightarrow a and b\overrightarrow b , then the question implies that;
a=1,b=1\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1 and a+b=1\left| {\overrightarrow a + \overrightarrow b } \right| = 1
Also according to Parallelogram law of vector addition;
a+b=a2+b2+2abcosθ\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta }
Where a\overrightarrow a and b\overrightarrow b are the unit vectors and θ\theta is the angle between the vectors.

Formulae used:
Parallelogram law of vector addition;
a+b=a2+b2+2abcosθ\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta }
Parallelogram law of vector subtraction;
ab=a2+b22abcosθ\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta }
Where a\overrightarrow a and b\overrightarrow b are the unit vectors and θ\theta is the angle between the vectors.

Complete step by step solution:
Given that;
a=1,b=1\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1 and a+b=1\left| {\overrightarrow a + \overrightarrow b } \right| = 1
Also according to vector addition property;
a+b=a2+b2+2abcosθ\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta }
Where a\overrightarrow a and b\overrightarrow b are the unit vectors and θ\theta is the angle between the vectors.
For the first part of the question we have to find the value of θ\theta such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is 11. To do this we equation the formula of addition of vectors with the value 11 .
a+b=a2+b2+2abcosθ\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } ...(1)...\left( 1 \right)
a+b=1\left| {\overrightarrow a + \overrightarrow b } \right| = 1 ...(2)...\left( 2 \right)
Equating (1)\left( 1 \right) and (2)\left( 2 \right)
a2+b2+2abcosθ=1\Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1
(1)2+(1)2+2(1)(1)cosθ=1\Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1 (Squaring both sides)
(2+2cosθ)2=12\Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}
2(1+cosθ)=1\Rightarrow 2(1 + \cos \theta ) = 1
cosθ=12\Rightarrow \cos \theta = - \dfrac{1}{2}

To find the angle between the two vectors a\overrightarrow a and b\overrightarrow b , we find the principal value of θ\theta for which cosθ=12\cos \theta = - \dfrac{1}{2} .
θ=cos1(12)\Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})
θ=120\Rightarrow \theta = 120^\circ
Therefore the vectors a\overrightarrow a and b\overrightarrow b have an angle of 120120^\circ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
ab=a2+b22abcosθ\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta }
ab=(1)2+(1)22(1)(1)cos120\Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ }
ab=(1)2+(1)22(1)(1)(12)\Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)}
ab=(1)2+(1)2+(1)2\Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}}
ab=3\Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3
Hence, the magnitude of the difference of the vectors is 3\sqrt 3.

Therefore the option that matches the solution is (B) 3,120.\sqrt 3 ,120^\circ.

Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.