Solveeit Logo

Question

Mathematics Question on Straight lines

If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y - 5 = 0 and 3x - 2y + 7 = 0 is always 10. Show that P must move on a line.

Answer

The equations of the given lines are
x+y\-5=0(1)x + y \- 5 = 0 … (1)
3x\-2y+7=0(2)3x \- 2y + 7 = 0 … (2)

The perpendicular distances of P (x, y) from lines (1) and (2) are respectively given by

d1=x+y5(1)2+(1)2d_1=\frac{\left|x+y-5\right|}{\sqrt{(1)^2+(1)^2}} and d2=3x2y+7(3)2+(2)2d_2=\frac{\left|3x-2y+7\right|}{\sqrt{(3)^2+(-2)^2}}

i.e, d1=x+y52d_1=\frac{\left|x+y-5\right|}{\sqrt{2}} and d2=3x2y+713d_2=\frac{\left|3x-2y+7\right|}{\sqrt{13}}

It is given that d1+d2=10d_1+d_2=10

x+y52+3x2y+713=10∴ \frac{\left|x+y-5\right|}{√\sqrt{2}}+\frac{\left|3x-2y+7\right|}{\sqrt{13}}=10

13x+y5+23x2y+71026=0⇒ \sqrt{13}\left|x+y-5\right|+\sqrt{2}\left|3x-2y+7\right|-10\sqrt{26}=0

13(x+y5)+2(3x2y+7)1026=0⇒ \sqrt{13}(x+y-5)+\sqrt{2}(3x-2y+7)-10\sqrt{26}=0

[Assuming (x+y5)(x+y-5) and (3x2y+7)(3x-2y+7) are postive]

13x+13y513+32x22y+721026=0,⇒\sqrt{13}x+\sqrt{13}y-5\sqrt{13}+3\sqrt{2}x-2\sqrt{2}y+7\sqrt{2}-10\sqrt{26}=0,

x(13+32)+y(1322)+(721026513)=0⇒ x(\sqrt{13}+3\sqrt2)+y(\sqrt{13}-2\sqrt2)+(7\sqrt2-10\sqrt{26}-5\sqrt{13})=0, which is the equation of a line.

Similarly, we can obtain the equation of line for any signs of (x+y5)(x+y-5) and(3x2y+7). (3x-2y+7).

Thus, point P must move on a line.