Solveeit Logo

Question

Question: If sum of distances of a point from the origin and lines \(x = 2\) is 4, then its locus is....

If sum of distances of a point from the origin and lines x=2x = 2 is 4, then its locus is.

A

x212y=36x^{2} - 12y = 36

B

y2+12x=36y^{2} + 12x = 36

C

y212x=36y^{2} - 12x = 36

D

x2+12y=36x^{2} + 12y = 36

Answer

y2+12x=36y^{2} + 12x = 36

Explanation

Solution

Let point be P(x,y)P ( x , y ). So, distance from the origin OP=x2+y2O P = \sqrt { x ^ { 2 } + y ^ { 2 } } and distance from the line =(x2)= ( x - 2 )

x2+y2+(x2)=4x2+y2=(x+6)\therefore \sqrt { x ^ { 2 } + y ^ { 2 } } + ( x - 2 ) = 4 \Rightarrow \sqrt { x ^ { 2 } + y ^ { 2 } } = ( - x + 6 )

x2+y2=x2+3612xy2+12x=36\Rightarrow x ^ { 2 } + y ^ { 2 } = x ^ { 2 } + 36 - 12 x \Rightarrow y ^ { 2 } + 12 x = 36.