Solveeit Logo

Question

Question: If sum of all the solutions of the equation $8cosx \cdot (cos\frac{\pi}{6} + x) \cdot cos(\frac{\pi...

If sum of all the solutions of the equation 8cosx(cosπ6+x)cos(π6x)12=18cosx \cdot (cos\frac{\pi}{6} + x) \cdot cos(\frac{\pi}{6} - x) - \frac{1}{2} = 1 in (0,π)(0, \pi) is kπk\pi, then k is equal to:

A

13/9

B

20/9

C

1

D

13/6

Answer

13/9

Explanation

Solution

The given equation is: 8cosx(cosπ6+x)cos(π6x)12=18\cos x \cdot (\cos\frac{\pi}{6} + x) \cdot \cos(\frac{\pi}{6} - x) - \frac{1}{2} = 1

Simplify the product of cosines: (cosπ6+x)cos(π6x)=12[cos((π6+x)+(π6x))+cos((π6+x)(π6x))](\cos\frac{\pi}{6} + x) \cdot \cos(\frac{\pi}{6} - x) = \frac{1}{2}[\cos((\frac{\pi}{6} + x) + (\frac{\pi}{6} - x)) + \cos((\frac{\pi}{6} + x) - (\frac{\pi}{6} - x))] =12[cos(π3)+cos(2x)]= \frac{1}{2}[\cos(\frac{\pi}{3}) + \cos(2x)] =12[12+cos(2x)]= \frac{1}{2}[\frac{1}{2} + \cos(2x)]

Substitute this back into the equation: 8cosx12[12+cos(2x)]12=18\cos x \cdot \frac{1}{2}[\frac{1}{2} + \cos(2x)] - \frac{1}{2} = 1 4cosx[12+cos(2x)]=324\cos x [\frac{1}{2} + \cos(2x)] = \frac{3}{2} 2cosx+4cosxcos(2x)=322\cos x + 4\cos x \cos(2x) = \frac{3}{2}

Use the product-to-sum formula for 4cosxcos(2x)4\cos x \cos(2x): 4cosxcos(2x)=2[2cos(2x)cosx]=2[cos(2x+x)+cos(2xx)]=2[cos(3x)+cosx]4\cos x \cos(2x) = 2[2\cos(2x)\cos x] = 2[\cos(2x+x) + \cos(2x-x)] = 2[\cos(3x) + \cos x]

Substitute this back into the equation: 2cosx+2(cos(3x)+cosx)=322\cos x + 2(\cos(3x) + \cos x) = \frac{3}{2} 2cosx+2cos(3x)+2cosx=322\cos x + 2\cos(3x) + 2\cos x = \frac{3}{2} 4cosx+2cos(3x)=324\cos x + 2\cos(3x) = \frac{3}{2} Multiply by 2: 8cosx+4cos(3x)=38\cos x + 4\cos(3x) = 3

Use the triple angle identity for cosine: cos(3x)=4cos3x3cosx\cos(3x) = 4\cos^3 x - 3\cos x. 8cosx+4(4cos3x3cosx)=38\cos x + 4(4\cos^3 x - 3\cos x) = 3 8cosx+16cos3x12cosx=38\cos x + 16\cos^3 x - 12\cos x = 3 16cos3x4cosx3=016\cos^3 x - 4\cos x - 3 = 0

Let y=cosxy = \cos x. The equation is 16y34y3=016y^3 - 4y - 3 = 0. The roots of this equation are y1=cos(π/9)y_1 = \cos(\pi/9), y2=cos(5π/9)y_2 = \cos(5\pi/9), y3=cos(7π/9)y_3 = \cos(7\pi/9). Since x(0,π)x \in (0, \pi), cosx\cos x takes values in (1,1)(-1, 1). The values cos(π/9)\cos(\pi/9), cos(5π/9)\cos(5\pi/9), and cos(7π/9)\cos(7\pi/9) are all in (1,1)(-1, 1). The solutions for xx in (0,π)(0, \pi) are: x1=arccos(cos(π/9))=π/9x_1 = \arccos(\cos(\pi/9)) = \pi/9 x2=arccos(cos(5π/9))=5π/9x_2 = \arccos(\cos(5\pi/9)) = 5\pi/9 x3=arccos(cos(7π/9))=7π/9x_3 = \arccos(\cos(7\pi/9)) = 7\pi/9

The sum of these solutions is: S=π9+5π9+7π9=1+5+79π=13π9S = \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} = \frac{1+5+7}{9}\pi = \frac{13\pi}{9}

Given that the sum of solutions is kπk\pi, we have kπ=13π9k\pi = \frac{13\pi}{9}. Therefore, k=139k = \frac{13}{9}.