Question
Question: If sum of all the solutions of the equation $8cosx \cdot (cos\frac{\pi}{6} + x) \cdot cos(\frac{\pi...
If sum of all the solutions of the equation 8cosx⋅(cos6π+x)⋅cos(6π−x)−21=1 in (0,π) is kπ, then k is equal to:

13/9
20/9
1
13/6
13/9
Solution
The given equation is: 8cosx⋅(cos6π+x)⋅cos(6π−x)−21=1
Simplify the product of cosines: (cos6π+x)⋅cos(6π−x)=21[cos((6π+x)+(6π−x))+cos((6π+x)−(6π−x))] =21[cos(3π)+cos(2x)] =21[21+cos(2x)]
Substitute this back into the equation: 8cosx⋅21[21+cos(2x)]−21=1 4cosx[21+cos(2x)]=23 2cosx+4cosxcos(2x)=23
Use the product-to-sum formula for 4cosxcos(2x): 4cosxcos(2x)=2[2cos(2x)cosx]=2[cos(2x+x)+cos(2x−x)]=2[cos(3x)+cosx]
Substitute this back into the equation: 2cosx+2(cos(3x)+cosx)=23 2cosx+2cos(3x)+2cosx=23 4cosx+2cos(3x)=23 Multiply by 2: 8cosx+4cos(3x)=3
Use the triple angle identity for cosine: cos(3x)=4cos3x−3cosx. 8cosx+4(4cos3x−3cosx)=3 8cosx+16cos3x−12cosx=3 16cos3x−4cosx−3=0
Let y=cosx. The equation is 16y3−4y−3=0. The roots of this equation are y1=cos(π/9), y2=cos(5π/9), y3=cos(7π/9). Since x∈(0,π), cosx takes values in (−1,1). The values cos(π/9), cos(5π/9), and cos(7π/9) are all in (−1,1). The solutions for x in (0,π) are: x1=arccos(cos(π/9))=π/9 x2=arccos(cos(5π/9))=5π/9 x3=arccos(cos(7π/9))=7π/9
The sum of these solutions is: S=9π+95π+97π=91+5+7π=913π
Given that the sum of solutions is kπ, we have kπ=913π. Therefore, k=913.
