Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sum of all the solutions of the equation 8cosx.(cos(π6+x).cos(π6x)12)=18 \cos x.\left(\cos \left(\frac{\pi}{6} + x\right). \cos\left(\frac{\pi}{6} - x\right) - \frac{1}{2}\right)= 1 in [0,π]\left[0, \pi\right] is kπk \pi, then kk is equal to :

A

23\frac{2}{3}

B

139\frac{13}{9}

C

89\frac{8}{9}

D

209\frac{20}{9}

Answer

139\frac{13}{9}

Explanation

Solution

8cosx(cosπ6sinx12)=18 \cos x \cdot\left(\cos \frac{\pi}{6}-\sin x-\frac{1}{2}\right)=1

8cosx(cosπ2+cos2x12)2=1\Rightarrow 8 \cos x\frac{\left(\cos\frac\pi2+\cos2x - \frac12\right)}{2}=1

4cosxcos2x2cosx=14\cos x\cos 2x - 2\cos x =1

2(cos3x+cos3x)=2cosx=12(\cos 3x+ \cos3x)= 2\cos x =1

cos3x=12\therefore \cos 3x = \frac12

3x=2nπ+π3\therefore 3x=2n\pi+\frac\pi3

2nπ3+π9\therefore 2n \frac\pi3+\frac\pi9

[0,π]areπ9,2π3π9,2π3+π9\therefore [0,\pi] are\frac\pi9,2\frac\pi3-\frac\pi9,2\frac\pi3+\frac\pi9

their sum is

π9+8π9+7π9=13π9\frac\pi9+8\frac\pi9+7\frac\pi9=13\frac\pi9

k=139k=\frac{13}{9}