Solveeit Logo

Question

Question: If \(\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n ...

If r=1ntr=n(n+1)(n+2)(n+3)8\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} , then r=1n1tr\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} equals
(A) (1(n+1)(n+2)12) - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)
(B) (1(n+1)(n+2)12)\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)
(C) (1(n+1)(n+2)+12)\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \dfrac{1}{2}} \right)
(D) (1(n1)(n2)+12)\left( {\dfrac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}} + \dfrac{1}{2}} \right)

Explanation

Solution

Here, the sum of nn consecutive terms of an expression is given as r=1ntr=n(n+1)(n+2)(n+3)8\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}. We have to firstly find the term tr{t_r} by using formula tr=SnSn1{t_r} = {S_n} - {S_{n - 1}}. write 1tr\dfrac{1}{{{t_r}}} and arrange them in suitable form then apply r=1n1tr\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} and we will get that the successive terms cancel each others.

Complete step-by-step solution:
Here, it is given that Sn=r=1ntr=n(n+1)(n+2)(n+3)8{S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} .
Now, we can find the term tn{t_n} using the above given formula.
tn=SnSn1 tn=n(n+1)(n+2)(n+3)8(n1)(n+11)(n+21)(n+31)8 tn=n(n+1)(n+2)(n+3)8(n1)n(n+1)(n+2)8 \Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\\ \Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\\ \Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
Here, it is clearly visible that n(n+1)(n+2)8\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8} is present in both the terms so, we can take this as common and we can write,
tn=n(n+1)(n+2)8((n+3)(n1)) tn=n(n+1)(n+2)2 \Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\\ \Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
So, rth{r^{th}} term of the required expression is tr=r(r+1)(r+2)2{t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}.
Now, we have to find the value of r=1n1tr\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} . So, firstly write,
1tr=2r(r+1)(r+2)\Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}
We have to add and subtract 22 in the numerator of the term 1tr\dfrac{1}{{{t_r}}} so that this can be converted into suitable formats.
1tr=(r+2)rr(r+1)(r+2)\Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}
We can write this as the difference of two fractions. That is
1tr=1r(r+1)1(r+1)(r+2)\Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}
So, r=1n1tr=1r(r+1)1(r+1)(r+2)\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}
Here, we have to find the summation of nn terms, so we have to put the value of rr from 11 to nn.
r=1n1tr=11(1+1)1(1+1)(1+2)+12×313×4+1n(n+1)1(n+1)(n+2)\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}
It is clearly visible that 2nd{2^{nd}} and 3rd{3^{rd}} terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
r=1n1tr=121(n+1)(n+2)\Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}}
Taking 1 - 1 as common we can write,
r=1n1tr=(1(n+1)(n+2)12)\Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)

Thus, option (A) is the correct answer.

Note: While solving the problem of summation of sequences and series we have to first write rth{r^{th}} term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of rth{r^{th}}term is cubic like 2r(r+1)(r+2)\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} we can write
2r(r+1)(r+2)=An+Bn+1+Cn+2\Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}} and by equating on both side of equation we can get the value of A,BA,B and CC and then do summation as shown above.