Solveeit Logo

Question

Question: If \[\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^...

If r=1nr(r+1)(2r+3)=an4+bn3+cn2+dn+e\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e then,
A. a+c=b+da + c = b + d
B. e=0e = 0
C. a,b23,c1a,b - \dfrac{2}{3},c - 1 are in A.P.
D. ca\dfrac{c}{a} is an integer

Explanation

Solution

We’ll approach the solution by finding the values of a, b, c, d, and e by evaluating the left-hand side of the equation using some the well-known formulas i.e.

r=1nr=n(n+1)2 r=1nr2=n(n+1)(2n+1)6 r=1nr3=(n(n+1)2)2  \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\\ \sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\\ \sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\\

Then we’ll compare our result with the right-hand side to get the required answer.

Complete step by step answer:

Given data: r=1nr(r+1)(2r+3)=an4+bn3+cn2+dn+e\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e
On solving the left-hand side of the equation r=1nr(r+1)(2r+3)=an4+bn3+cn2+dn+e\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e
=r=1nr(r+1)(2r+3)= \sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)}
=r=1n(r2+r)(2r+3)= \sum\limits_{r = 1}^n {\left( {{r^2} + r} \right)\left( {2r + 3} \right)}
On further expanding we get,
=r=1n(2r3+3r2+2r2+3r)= \sum\limits_{r = 1}^n {\left( {2{r^3} + 3{r^2} + 2{r^2} + 3r} \right)}
=r=1n(2r3+5r2+3r)= \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)}
It is well known that,
r=1n(A+B+C)=r=1nA+r=1nB+r=1nC\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C
r=1n(2r3+5r2+3r)=r=1n2r3+r=1n5r2+r=1n3r\Rightarrow \sum\limits_{r = 1}^n {\left( {2{r^3} + 5{r^2} + 3r} \right)} = \sum\limits_{r = 1}^n {2{r^3}} + \sum\limits_{r = 1}^n {5{r^2}} + \sum\limits_{r = 1}^n {3r}
2r=1nr3+5r=1nr2+3r=1nr\Rightarrow 2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r
Now, as we all know

r=1nr=n(n+1)2 r=1nr2=n(n+1)(2n+1)6 r=1nr3=(n(n+1)2)2  \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\\ \sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\\ \sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\\

So, We’ll have
2r=1nr3+5r=1nr2+3r=1nr=2(n(n+1)2)2+5(n(n+1)(2n+1)6)+3(n(n+1)2)2\sum\limits_{r = 1}^n {{r^3}} + 5\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r = 2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 5\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)
=2((n2+n)24)+5((n2+n)(2n+1)6)+3(n2+n2)= 2\left( {\dfrac{{{{\left( {{n^2} + n} \right)}^2}}}{4}} \right) + 5\left( {\dfrac{{\left( {{n^2} + n} \right)\left( {2n + 1} \right)}}{6}} \right) + 3\left( {\dfrac{{{n^2} + n}}{2}} \right)
After expanding the second term by opening the brackets
=12(n2+n)2+56(2n3+n2+2n2+n)+32(n2+n)= \dfrac{1}{2}{\left( {{n^2} + n} \right)^2} + \dfrac{5}{6}\left( {2{n^3} + {n^2} + 2{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)
Using (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2abin the first term,
=12(n4+n2+2n3)+56(2n3+3n2+n)+32(n2+n)= \dfrac{1}{2}\left( {{n^4} + {n^2} + 2{n^3}} \right) + \dfrac{5}{6}\left( {2{n^3} + 3{n^2} + n} \right) + \dfrac{3}{2}\left( {{n^2} + n} \right)
Now, separating the terms with respect to exponents we get,
=12n4+2n3(12+56)+n2(12+3(56)+32)+n(56+32)= \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{1}{2} + \dfrac{5}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + 3\left( {\dfrac{5}{6}} \right) + \dfrac{3}{2}} \right) + n\left( {\dfrac{5}{6} + \dfrac{3}{2}} \right)
On further simplification we get,
=12n4+2n3(3+56)+n2(12+52+32)+n(5+96)= \dfrac{1}{2}{n^4} + 2{n^3}\left( {\dfrac{{3 + 5}}{6}} \right) + {n^2}\left( {\dfrac{1}{2} + \dfrac{5}{2} + \dfrac{3}{2}} \right) + n\left( {\dfrac{{5 + 9}}{6}} \right)
=12n4+83n3+92n2+146n= \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{{14}}{6}n
=12n4+83n3+92n2+73n= \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n
Therefore we now have
r=1nr(r+1)(2r+3)=12n4+83n3+92n2+73n\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = \dfrac{1}{2}{n^4} + \dfrac{8}{3}{n^3} + \dfrac{9}{2}{n^2} + \dfrac{7}{3}n
On computing this with the given equation, r=1nr(r+1)(2r+3)=an4+bn3+cn2+dn+e\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e , we get,
a=12 b=83 c=92 d=73 e=0  a = \dfrac{1}{2} \\\ b = \dfrac{8}{3} \\\ c = \dfrac{9}{2} \\\ d = \dfrac{7}{3} \\\ e = 0 \\\
Option(B) is correct
Now,

a+c=12+92 =102 =5 b+d=83+73 =153 =5  a + c = \dfrac{1}{2} + \dfrac{9}{2} \\\ = \dfrac{{10}}{2} \\\ = 5 \\\ b + d = \dfrac{8}{3} + \dfrac{7}{3} \\\ = \dfrac{{15}}{3} \\\ = 5 \\\

Since, a + c = b + d = 5{\text{a + c = b + d = 5}}
Option(A) is correct

a,b23,c1=12,8323,921 =12,2,72  a,b - \dfrac{2}{3},c - 1 = \dfrac{1}{2},\dfrac{8}{3} - \dfrac{2}{3},\dfrac{9}{2} - 1 \\\ = \dfrac{1}{2},2,\dfrac{7}{2} \\\

Now checking for common difference,

b23a=212 =412 =32 and c1(b23)=722 =742 =32  b - \dfrac{2}{3} - a = 2 - \dfrac{1}{2} \\\ = \dfrac{{4 - 1}}{2} \\\ = \dfrac{3}{2}{\text{ }}and \\\ c - 1 - (b - \dfrac{2}{3}) = \dfrac{7}{2} - 2 \\\ = \dfrac{{7 - 4}}{2} \\\ = \dfrac{3}{2} \\\

Since the common difference is the same for both consecutive terms we can conclude that
a,b23,c1a,b - \dfrac{2}{3},c - 1 are in A.P.
Therefore, option(C) is correct
Now, checking for ca,\dfrac{c}{a},
ca=(92)(12) =9  \dfrac{c}{a} = \dfrac{{\left( {\dfrac{9}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\\ = 9 \\\
Which is an integer
Therefore, option(D) is correct
Hence, All the options are correct.

Note: We can also verify our answer by putting the value of n in r=1nr(r+1)(2r+3)=an4+bn3+cn2+dn+e\sum\limits_{r = 1}^n {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{n^4} + b{n^3} + c{n^2} + dn + e
Putting n=1n = 1 , we get
r=11r(r+1)(2r+3)=a(1)4+b(1)3+c(1)2+d(1)+e\sum\limits_{r = 1}^1 {r\left( {r + 1} \right)\left( {2r + 3} \right)} = a{(1)^4} + b{(1)^3} + c{(1)^2} + d(1) + e
(1)(1+1)(2(1)+3)=a+b+c+d+e\Rightarrow (1)\left( {1 + 1} \right)\left( {2(1) + 3} \right) = a + b + c + d + e
a+b+c+d+e=2(5)\Rightarrow a + b + c + d + e = 2(5)
a+b+c+d+e=10\Rightarrow a + b + c + d + e = 10
Substituting the values of a, b, c, d, and e
a+b+c+d+e=12+83+92+73+0a + b + c + d + e = \dfrac{1}{2} + \dfrac{8}{3} + \dfrac{9}{2} + \dfrac{7}{3} + 0
=1+92+8+73= \dfrac{{1 + 9}}{2} + \dfrac{{8 + 7}}{3}
=102+153= \dfrac{{10}}{2} + \dfrac{{15}}{3}
=5+5= 5 + 5
=10= 10
Therefore, we can conclude the values of A, B, C, D and are correct.