Question
Question: If \[\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}\] for any \[k\ge 1\] and \...
If r=1∑kcos−1βr=2kπ for any k≥1 and A=r=1∑k(βr)r, then x→Alimx+x2(1+x)31−(1−2x)41 is equal to
(a). 0
(b). 21
(c). 2π
(d). 65
Solution
Hint: Use the fact that the value of the function cos−1x is 2π for x=0. Then find the value of βr and thus A. Finally evaluate the limit using the L'Hospital Rule.
Complete step-by-step answer:
We have the function r=1∑kcos−1βr=2kπ. We need to find the value of βr. We observe that the sum of k terms is 2kπ. Thus, the value of cos−1βr is 2π for each r. Hence, for each r, we have βr=0.
Now, we will use this to evaluate the value of the function A=r=1∑k(βr)r.
Thus, we have A=r=1∑k(βr)r=01+02+03+...0k=k(0)=0.
Hence, we have A=0.
Now, we will evaluate the limit x→Alimx+x2(1+x)31−(1−2x)41. As A=0, we have x→Alimx+x2(1+x)31−(1−2x)41=x→0limx+x2(1+x)31−(1−2x)41.
We observe that if we apply the limit directly, we get x→0limx+x2(1+x)31−(1−2x)41=0+01−1=00.
Hence, we will use L’Hopital Rule to evaluate the given limit of the function which states that if x→alimg(x)f(x)=g(a)f(a)= 00 then we will use x→alimg(x)f(x)=x→alimg′(x)f′(x)=g′(a)f′(a) to evaluate the limit.
Substituting f(x)=(1+x)31−(1−2x)41,g(x)=x+x2 in the above equation, we have x→0limx+x2(1+x)31−(1−2x)41=x→0limdxd(x+x2)dxd(1+x)31−(1−2x)41.
We can rewrite the above equation as x→0limx+x2(1+x)31−(1−2x)41=x→0limdxd(x+x2)dxd(1+x)31−(1−2x)41=x→0limdxd(x)+dxd(x2)dxd(1+x)31−dxd(1−2x)41.....(1). We know that the derivative of the function of the form y=(ax+b)n is dxdy=na(ax+b)n−1.
Substituting a=1,b=1,n=31 in the above formula, we have dxd(1+x)31=31(x+1)3−2.....(2).
Substituting a=−2,b=1,n=41 in the above formula, we have dxd(1−2x)41=2−1(1−2x)4−3.....(3).
Substituting a=1,b=0,n=1 in the above formula, we have dxd(x)=1.....(4).
Substituting a=1,b=0,n=2 in the above formula, we have dxd(x2)=2x.....(5).
Substituting equation (2),(3),(4)and(5) in equation (1), we get x→0limx+x2(1+x)31−(1−2x)41=x→0limdxd(x+x2)dxd(1+x)31−(1−2x)41=x→0limdxd(x)+dxd(x2)dxd(1+x)31−dxd(1−2x)41=x→0lim1+2x31(1+x)3−2−(2−1)(1−2x)4−3
On further solving the equation by applying limits, we have x→0lim1+2x31(1+x)3−2+21(1−2x)4−3=1+031+21=65.
Hence, the value of x→Alimx+x2(1+x)31−(1−2x)41is65.
Note: We can take other possible values of βr as well, however, for each value that satisfies the given condition, we will get A=0 and hence, the limit will be the same.