Solveeit Logo

Question

Question: If \[\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}\] for any \[k\ge 1\] and \...

If r=1kcos1βr=kπ2\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}} for any k1k\ge 1 and A=r=1k(βr)rA=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}, then limxA(1+x)13(12x)14x+x2\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}} is equal to
(a). 00
(b). 12\dfrac{1}{2}
(c). π2\dfrac{\pi }{2}
(d). 56\dfrac{5}{6}

Explanation

Solution

Hint: Use the fact that the value of the function cos1x{{\cos }^{-1}}x is π2\dfrac{\pi }{2} for x=0x=0. Then find the value of βr{{\beta }_{r}} and thus AA. Finally evaluate the limit using the L'Hospital Rule.

Complete step-by-step answer:
We have the function r=1kcos1βr=kπ2\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}. We need to find the value of βr{{\beta }_{r}}. We observe that the sum of kk terms is kπ2\dfrac{k\pi }{2}. Thus, the value of cos1βr{{\cos }^{-1}}{{\beta }_{r}} is π2\dfrac{\pi }{2} for each rr. Hence, for each rr, we have βr=0{{\beta }_{r}}=0.
Now, we will use this to evaluate the value of the function A=r=1k(βr)rA=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}.
Thus, we have A=r=1k(βr)r=01+02+03+...0k=k(0)=0A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}={{0}^{1}}+{{0}^{2}}+{{0}^{3}}+{{...0}^{k}}=k\left( 0 \right)=0.
Hence, we have A=0A=0.
Now, we will evaluate the limit limxA(1+x)13(12x)14x+x2\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}. As A=0A=0, we have limxA(1+x)13(12x)14x+x2=limx0(1+x)13(12x)14x+x2\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}.
We observe that if we apply the limit directly, we get limx0(1+x)13(12x)14x+x2=110+0=00\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\dfrac{1-1}{0+0}=\dfrac{0}{0}.
Hence, we will use L’Hopital Rule to evaluate the given limit of the function which states that if limxaf(x)g(x)=f(a)g(a)=00  \underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{\begin{aligned} & 0 \\\ & \\\ \end{aligned}} then we will use limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)} to evaluate the limit.
Substituting f(x)=(1+x)13(12x)14,g(x)=x+x2f\left( x \right)={{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}},g\left( x \right)=x+{{x}^{2}} in the above equation, we have limx0(1+x)13(12x)14x+x2=limx0ddx((1+x)13(12x)14)ddx(x+x2)\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}.
We can rewrite the above equation as limx0(1+x)13(12x)14x+x2=limx0ddx((1+x)13(12x)14)ddx(x+x2)=limx0ddx((1+x)13)ddx((12x)14)ddx(x)+ddx(x2).....(1)\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}.....\left( 1 \right). We know that the derivative of the function of the form y=(ax+b)ny={{(ax+b)}^{n}} is dydx=na(ax+b)n1\dfrac{dy}{dx}=na{{\left( ax+b \right)}^{n-1}}.
Substituting a=1,b=1,n=13a=1,b=1,n=\dfrac{1}{3} in the above formula, we have ddx((1+x)13)=13(x+1)23.....(2)\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)=\dfrac{1}{3}{{\left( x+1 \right)}^{\dfrac{-2}{3}}}.....\left( 2 \right).
Substituting a=2,b=1,n=14a=-2,b=1,n=\dfrac{1}{4} in the above formula, we have ddx((12x)14)=12(12x)34.....(3)\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)=\dfrac{-1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}.....\left( 3 \right).
Substituting a=1,b=0,n=1a=1,b=0,n=1 in the above formula, we have ddx(x)=1.....(4)\dfrac{d}{dx}\left( x \right)=1.....\left( 4 \right).
Substituting a=1,b=0,n=2a=1,b=0,n=2 in the above formula, we have ddx(x2)=2x.....(5)\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x.....\left( 5 \right).
Substituting equation (2),(3),(4)\left( 2 \right),\left( 3 \right),\left( 4 \right)and(5)\left( 5 \right) in equation (1)\left( 1 \right), we get limx0(1+x)13(12x)14x+x2=limx0ddx((1+x)13(12x)14)ddx(x+x2)=limx0ddx((1+x)13)ddx((12x)14)ddx(x)+ddx(x2)=limx013(1+x)23(12)(12x)341+2x\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}-\left( \dfrac{-1}{2} \right){{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}
On further solving the equation by applying limits, we have limx013(1+x)23+12(12x)341+2x=13+121+0=56\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}+\dfrac{1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}=\dfrac{\dfrac{1}{3}+\dfrac{1}{2}}{1+0}=\dfrac{5}{6}.
Hence, the value of limxA(1+x)13(12x)14x+x2\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}is56\dfrac{5}{6}.

Note: We can take other possible values of βr{{\beta }_{r}} as well, however, for each value that satisfies the given condition, we will get A=0A=0 and hence, the limit will be the same.