Solveeit Logo

Question

Mathematics Question on Limits

If r=0nr+2r+1nCr=2816\sum\limits^{n}_{r=0} \frac{r+2}{r+1} \,^{n}C_{r} = \frac{2^{8}-1}{6} , then n=n =

A

8

B

4

C

6

D

5

Answer

5

Explanation

Solution

r=0nr+2r+1nCr=2816\displaystyle\sum_{r=0}^{n} \frac{r+2}{r+1}^{n} C_{r}=\frac{2^{8}-1}{6} r=0n[1+1r+1]nCr=2816\Rightarrow \displaystyle\sum_{r=0}^{n}\left[1+\frac{1}{r+1}\right]^{n} C_{r}=\frac{2^{8}-1}{6} 2n+r=0n1n+1n+1Cr+1=2816\Rightarrow 2^{n}+\displaystyle\sum_{r=0}^{n} \frac{1}{n+1} \cdot{ }^{n+1} C_{r+1}=\frac{2^{8}-1}{6} 2n+2n+11n+1=2816\Rightarrow 2^{n}+\frac{2^{n+1}-1}{n+1}=\frac{2^{8}-1}{6} 2n(n+3)1n+1=2816\Rightarrow \frac{2^{n}(n+3)-1}{n+1}=\frac{2^{8}-1}{6} 2n(n+1+2)1n+1=25(6+2)16\Rightarrow \frac{2^{n}(n+1+2)-1}{n+1}=\frac{2^{5}(6+2)-1}{6} Comparing we get n+1=6n +1=6 n=5\Rightarrow n =5