Solveeit Logo

Question

Mathematics Question on permutations and combinations

If
k=131\sum\limits_{k=1}^{31} (31Ck)(31Ck1)(^{31}C_k) (^{31}C_{k-1}) k=130-\sum\limits_{k=1}^{30} (30Ck)(30Ck1)(^{30}C_k) (^{30}C_{k-1}) =α(60!)(30!)(31!)= \frac{α (60!)} {(30!) (31!)}
where αRα ∈ R, then the value of 16α is equal to

A

1411

B

1320

C

1615

D

1855

Answer

1411

Explanation

Solution

The correct answer is (A) : 1411
\sum\limits_{k=1}^{31}$$(^{31}C_k) (^{31}C_{k-1}) k=130-\sum\limits_{k=1}^{30} (30Ck)(30Ck1)(^{30}C_k) (^{30}C_{k-1})
=k=131=\sum\limits_{k=1}^{31} (31Ck).(31C32k)(^{31}C_k) . (^{31}C_{32-k}) k=130-\sum\limits_{k=1}^{30} (30Ck).(30Ck1)(^{30}C_k) . (^{30}C_{k-1})
=62C3260C31= ^{62}C_{32} - ^{60}C_{31}
=60!31!29!(62.6132.301)=60!31!29!282232.30= \frac{60!}{31!29!} ( \frac{62.61}{32.30} - 1 ) = \frac{60!}{ 31!29!} \frac{2822}{32.30}

α=282232α = \frac{2822}{32}
16α=1411⇒ 16α = 1411