Question
Mathematics Question on permutations and combinations
If
k=1∑31 (31Ck)(31Ck−1) −k=1∑30 (30Ck)(30Ck−1) =(30!)(31!)α(60!)
where α∈R, then the value of 16α is equal to
A
1411
B
1320
C
1615
D
1855
Answer
1411
Explanation
Solution
The correct answer is (A) : 1411
\sum\limits_{k=1}^{31}$$(^{31}C_k) (^{31}C_{k-1}) −k=1∑30 (30Ck)(30Ck−1)
=k=1∑31 (31Ck).(31C32−k) −k=1∑30 (30Ck).(30Ck−1)
=62C32−60C31
=31!29!60!(32.3062.61−1)=31!29!60!32.302822
α=322822
⇒16α=1411