Solveeit Logo

Question

Question: If \(\sum\limits_{A}{\cos A}=0=\sum\limits_{A}{\sin A}\) , then the value of \({{x}^{\sin (2A-B-C)}}...

If AcosA=0=AsinA\sum\limits_{A}{\cos A}=0=\sum\limits_{A}{\sin A} , then the value of xsin(2ABC)xsin(2BCA)xsin(2CAB){{x}^{\sin (2A-B-C)}}{{x}^{\sin (2B-C-A)}}{{x}^{\sin (2C-A-B)}} should be equal to?
(a)1
(b)0
(c)3
(d)-3

Explanation

Solution

Hint: In this question, we are given that the sum of the cosine and sine of the angles is equal to 0. Therefore, we can form 3 complex numbers whose argument will be equal to the given angles. Then, we can find out the difference between the arguments of the complex numbers which will be equal to the difference in the given angles, and as the exponents of x are given in terms of the different angles, we can put the values of the difference in angles to obtain the required answer.

Complete step-by-step answer:
In this question, the given angles are A, B and C and the relation between the angles is given to be
AcosA=0=AsinA.........................(1.1)\sum\limits_{A}{\cos A}=0=\sum\limits_{A}{\sin A}.........................(1.1)
Now, if we form three complex numbers, z1,z2 and z3{{z}_{1}},{{z}_{2}}\text{ and }{{z}_{3}} with the given angles as their argument, we can write them as
z1=cosA+isinA z2=cosB+isinB z3=cosC+isinC.................................(1.2) \begin{aligned} & {{z}_{1}}=\cos A+i\sin A \\\ & {{z}_{2}}=\cos B+i\sin B \\\ & {{z}_{3}}=\cos C+i\sin C.................................(1.2) \\\ \end{aligned}
Taking the sum of the above complex numbers, we get
z1+z2+z3=cosA+isinA+cosB+isinB+cosC+isinC =(cosA+cosB+cosC)+i(sinA+sinB+sinC) =0+0=0...........................(1.3) \begin{aligned} & {{z}_{1}}+{{z}_{2}}+{{z}_{3}}=\cos A+i\sin A+\cos B+i\sin B+\cos C+i\sin C \\\ & =\left( \cos A+\cos B+\cos C \right)+i\left( \sin A+\sin B+\sin C \right) \\\ & =0+0=0...........................(1.3) \\\ \end{aligned}
Where in the last line we have used equation (1.1) for the sum of the cosines and sines of the angles. Thus, from (1.3), we can write
z1+z2=z3..........................(1.4){{z}_{1}}+{{z}_{2}}=-{{z}_{3}}..........................(1.4)

Now, the formula for the magnitude of a complex number z=a+ib is given by
z=a+ib=a2+b2.....................(1.5)\left| z \right|=\left| a+ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}.....................(1.5)
Therefore, from (1.2) and using the fact that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 for any angle θ\theta , we obtain
z1=cos2A+sin2A=1=1 z2=cos2B+sin2B=1=1 z3=cos2C+sin2C=1=1...................(1.6) \begin{aligned} & \left| {{z}_{1}} \right|=\sqrt{{{\cos }^{2}}A+{{\sin }^{2}}A}=\sqrt{1}=1 \\\ & \left| {{z}_{2}} \right|=\sqrt{{{\cos }^{2}}B+{{\sin }^{2}}B}=\sqrt{1}=1 \\\ & \left| {{z}_{3}} \right|=\sqrt{{{\cos }^{2}}C+{{\sin }^{2}}C}=\sqrt{1}=1...................(1.6) \\\ \end{aligned}
Also, the magnitude of the difference of two complex numbers z1{{z}_{1}} and z2{{z}_{2}} is given by
z1+z22=z12+z22+2z1z2cosθ........................(1.7){{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\cos \theta ........................(1.7)
Using the values from (1.4) and (1.6) in (1.7), we obtain
z1+z22=z32=z12+z22+2z1z2cosθ 1=1+1+2×1×1cosθ cosθ=12........................(1.7) \begin{aligned} & {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{3}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\cos \theta \\\ & \Rightarrow 1=1+1+2\times 1\times 1\cos \theta \\\ & \Rightarrow \cos \theta =\dfrac{-1}{2}........................(1.7) \\\ \end{aligned}
However, we know that cos(2π3)=12..................(1.8)\cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2}..................(1.8)
We can use the formula
cos(α)=cos(β) α=2nπ±β \begin{aligned} & \cos \left( \alpha \right)=\cos \left( \beta \right) \\\ & \Rightarrow \alpha =2n\pi \pm \beta \\\ \end{aligned}
where n is an integer. However, as we are interested only in the difference of the two angles, we can take the angle within 0 and 2π2\pi and as we are interested about the relative orientation of the angles, we can take the coordinate axes such that the difference of their angles is positive. Therefore, equating the angles in (1.7) and (1.8) to obtain
θ=2π3..................(1.9)\theta =\dfrac{2\pi }{3}..................(1.9)
However, we could also have written (1.4) as z1+z3=z2{{z}_{1}}+{{z}_{3}}=-{{z}_{2}} or z2+z3=z1{{z}_{2}}+{{z}_{3}}=-{{z}_{1}} and then followed the same procedure to obtain that the angle between the complex numbers z3{{z}_{3}} and z2{{z}_{2}}, i.e. the difference of their arguments as BC=2π3B-C=\dfrac{2\pi }{3}
AB=2π3 BC=2π3 AC=AB+BC=2π3+2π3=4π3..................(1.10) \begin{aligned} & A-B=\dfrac{2\pi }{3} \\\ & B-C=\dfrac{2\pi }{3} \\\ & \Rightarrow A-C=A-B+B-C=\dfrac{2\pi }{3}+\dfrac{2\pi }{3}=\dfrac{4\pi }{3}..................(1.10) \\\ \end{aligned}
As shown in the figure below
Therefore, we can now use these values in the expression given in the question to obtain

& {{x}^{\sin (2A-B-C)}}{{x}^{\sin (2B-C-A)}}{{x}^{\sin (2C-A-B)}}={{x}^{\sin (A-B+A-C)}}{{x}^{\sin (B-C+B-A)}}{{x}^{\sin (C-A+C-B)}} \\\ & ={{x}^{\sin \left( \dfrac{2\pi }{3}+\dfrac{4\pi }{3} \right)}}{{x}^{\sin \left( \dfrac{2\pi }{3}-\dfrac{2\pi }{3} \right)}}{{x}^{\sin \left( \dfrac{-4\pi }{3}+\dfrac{-2\pi }{3} \right)}} \\\ & ={{x}^{\sin \left( \dfrac{6\pi }{3} \right)}}{{x}^{\sin \left( 0 \right)}}{{x}^{\sin \left( \dfrac{-6\pi }{3} \right)}}={{x}^{\sin \left( 2\pi \right)}}{{x}^{\sin \left( 0 \right)}}{{x}^{\sin \left( -2\pi \right)}} \\\ & ={{x}^{0}}{{x}^{0}}{{x}^{0}}=1\times 1\times 1=1 \\\ \end{aligned}$$ Thus, we obtain the answer to the given question as 1 which matches option (a) and hence (a) is the correct answer to this question. Note: We should note that in equation (1.1), $\sum\limits_{A}{\cos A}=0=\sum\limits_{A}{\sin A}$ means that $\cos A+\cos B+\cos C=0=\sin A+\sin B+\sin C$ and the symbol A in the summation symbol just indicates that the variable A is being summed over. We could also have written the same expression using any other variable say P by $\sum\limits_{P}{\cos P}=0=\sum\limits_{P}{\sin P}$ and one should not get confused in the variable A used in the summation term and the angle A used in the given expression ${{x}^{\sin (2A-B-C)}}{{x}^{\sin (2B-C-A)}}{{x}^{\sin (2C-A-B)}}$ as they are different from each other.