Solveeit Logo

Question

Mathematics Question on Binomial theorem

If \sum^\limits{25}_{r=0} \left\\{^{50}C_{r} . ^{50-r}C_{25-r}\right\\}=K\left(^{50}C_{25}\right) , then KK is equal to :

A

22512^{25} - 1

B

(25)2(25)^2

C

2252^{25}

D

2242^{24}

Answer

2252^{25}

Explanation

Solution

r=02550Cr.50rC25r\sum^{25}_{r=0} {^{50}C_{r}} . {^{50-r}C_{25-r}}
=r=02550!r!(50r)!×(50r)!(25)!(25r)!=\sum^{25}_{r=0} \frac{50!}{r!\left(50-r\right)!} \times\frac{\left(50-r\right)!}{\left(25\right)!\left(25-r\right)!}
=r=02550!25!25!×25!(25r)!(r!)=\sum^{25}_{r=0} \frac{50!}{25!25!} \times\frac{25!}{\left(25-r\right)!\left(r!\right)}
=50C25r=02525Cr=(225)50C25= {^{50}C_{25}} \sum^{25}_{r=0} {^{25}C_{r}} =\left(2^{25}\right)^{50}C_{25}
K=225\therefore K = 2^{25}