Solveeit Logo

Question

Question: If \(\sum _ { k = 1 } ^ { n } \left( \sum _ { m = 1 } ^ { k } m ^ { 2 } \right)\) = an<sup>4</sup> ...

If k=1n(m=1km2)\sum _ { k = 1 } ^ { n } \left( \sum _ { m = 1 } ^ { k } m ^ { 2 } \right) = an4 + bn3 + cn2 + dn + e then a + b + c + d + e =

A

10

B

6

C

3

D

1

Answer

1

Explanation

Solution

k=1n(m=1km2)\sum _ { k = 1 } ^ { n } \left( \sum _ { m = 1 } ^ { k } m ^ { 2 } \right) = k=1n(12+22+32++k2)\sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \left( 1 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + \ldots + \mathrm { k } ^ { 2 } \right)

= =

=13\frac { 1 } { 3 } {n(n+1)2}2\left\{ \frac { \mathrm { n } ( \mathrm { n } + 1 ) } { 2 } \right\} ^ { 2 } + 12\frac { 1 } { 2 } {n(n+1)(2n+1)6}\left\{ \frac { \mathrm { n } ( \mathrm { n } + 1 ) ( 2 \mathrm { n } + 1 ) } { 6 } \right\} + 16\frac { 1 } { 6 }

= 112\frac { 1 } { 12 }{n4 + 4n3 + 5n2 + 2n}

\ a = 1/12, b = 1/3, c = 5/12, d = 1/6, e = 0

So a + b + c + d + e = 1.