Solveeit Logo

Question

Question: If α<sub>1</sub>, α<sub>2</sub> are the roots of equation x<sup>2</sup> – px + 1 = 0 and β<sub>1</su...

If α1, α2 are the roots of equation x2 – px + 1 = 0 and β1, β2 be those of equation x2 – qx + 1 = 0 and vector α1i^\widehat{i} + β1j^\widehat{j}is parallel to α2i^\widehat{i}+ β2j^\widehat{j} then –

A

p = ± q

B

p = ± 2q

C

p = 2q

D

None of these

Answer

p = ± q

Explanation

Solution

α1 + α2 = p β1 + β2 = q

α1α2 = 1 β1β2 = 1

Let a=α1i^+β1j^\overset{\rightarrow}{a} = \alpha_{1}\widehat{i} + \beta_{1}\widehat{j} and b=α2i^+β2j^\overset{\rightarrow}{b} = \alpha_{2}\widehat{i} + \beta_{2}\widehat{j}are parallel

⇒ α1α2\frac{\alpha_{1}}{\alpha_{2}}=β1β2\frac{\beta_{1}}{\beta_{2}}α1α2(α1+α2)2\frac{\alpha_{1}\alpha_{2}}{(\alpha_{1} + \alpha_{2})^{2}} = β1β2(β1+β2)2\frac{\beta_{1}\beta_{2}}{(\beta_{1} + \beta_{2})^{2}}

⇒ 1p2\frac{1}{p^{2}} = 1q2\frac{1}{q^{2}} ⇒   p2 = q2 ⇒ p = ± q