Solveeit Logo

Question

Question: If ∆<sub>1</sub> = \(\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matr...

If ∆1 = 111abca2b2c2,Δ2=1bca1cab1abc\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right|,\Delta_{2} = \left| \begin{matrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{matrix} \right| then

A

1+∆2=0

B

1+2∆2=0

C

1=2

D

1= 2∆2

Answer

1+∆2=0

Explanation

Solution

\therefore Δ1=\Delta_{1} = 111abca2b2c2,=(ab)(bc)(ca)\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right|, = (a - b)(b - c)(c - a)& Δ2=1bca1cab1abc\Delta_{2} = \left| \begin{matrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{matrix} \right|

= 1abc=aabca2babcb2cabcc2\frac{1}{abc} = \left| \begin{matrix} a & abc & a^{2} \\ b & abc & b^{2} \\ c & abc & c^{2} \end{matrix} \right| = a1a2b1b2c1c2\left| \begin{matrix} a & 1 & a^{2} \\ b & 1 & b^{2} \\ c & 1 & c^{2} \end{matrix} \right|

=1aa21bb21cc2- \left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| =111abca2b2c2= - \left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{matrix} \right| =Δ1= - \Delta_{1}

Δ1+Δ2=0\therefore\Delta_{1} + \Delta_{2} = 0