Solveeit Logo

Question

Question: If ∆<sub>1</sub> and ∆<sub>2</sub> be the determinant. \(\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \om...

If ∆1 and ∆2 be the determinant.

1111ωω21ω2ω\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{matrix} \right|and 11ω11ω2ω2ω1\left| \begin{matrix} 1 & 1 & \omega \\ 1 & 1 & \omega^{2} \\ \omega^{2} & \omega & 1 \end{matrix} \right|.

ω, ω2 are imaginary cube root of unity. Then Δ1Δ2\frac{\Delta_{1}}{\Delta_{2}}=

A

33\sqrt{3}I

B

3\sqrt{3}I

C

3\sqrt{3}I

D

None on these

Answer

3\sqrt{3}I

Explanation

Solution

Applying R1 + R2­ + R3 Putting 1 + ω + ω2 = 0

1 = 3(ω2 – ω) = 3[1i321+i32]\left\lbrack \frac{- 1 - i\sqrt{3}}{2} - \frac{- 1 + i\sqrt{3}}{2} \right\rbrack= 333\sqrt{3}i

Applying R1 – R2 making two zero

2 = (ω – ω2)2 = ω2 + ω4 – 2ω3 = ω2 + ω + 1 – 3 = –3 ⇒ Δ1Δ2\frac{\Delta_{1}}{\Delta_{2}} = 3\sqrt{3}i