Question
Question: If ∆<sub>1</sub> and ∆<sub>2</sub> be the determinant. \(\left| \begin{matrix} 1 & 1 & 1 \\ 1 & \om...
If ∆1 and ∆2 be the determinant.
1111ωω21ω2ωand 11ω211ωωω21.
ω, ω2 are imaginary cube root of unity. Then Δ2Δ1=
A
33I
B
3I
C
–3I
D
None on these
Answer
3I
Explanation
Solution
Applying R1 + R2 + R3 Putting 1 + ω + ω2 = 0
∆1 = 3(ω2 – ω) = 3[2−1−i3−2−1+i3]= 33i
Applying R1 – R2 making two zero
∆2 = (ω – ω2)2 = ω2 + ω4 – 2ω3 = ω2 + ω + 1 – 3 = –3 ⇒ Δ2Δ1 = 3i