Question
Question: If S<sub>r</sub> = \(\left| \begin{matrix} 2r & x & n(n + 1) \\ 6r^{2}–1 & y & n^{2}(2n + 3) \\ 4r^{...
If Sr = 2r6r2–14r3–2nrxyzn(n+1)n2(2n+3)n3(n+1), then value of ∑r=1n6muSr is
independent of –
A
x only
B
y only
C
x, y, z, n
D
n only
Answer
x, y, z, n
Explanation
Solution
∑r=1nSr=6mu2Σr6Σr2−Σ14Σr3−2nΣrxyzn(n+1)n2(2n+3)n3(n+1)
\frac{2n(n + 1)}{2} & x & n(n + 1) \\ \frac{6n(n + 1)(2n + 1)}{6} - n & y & n^{2}(2n + 3) \\ 4\left( \frac{n(n + 1)}{2} \right)^{2} - 2n\left( \frac{n(n + 1)}{2} \right) & y & n^{3}(n + 1) \end{matrix} \right|$$ = $\left| \begin{matrix} n(n + 1) & x & n(n + 1) \\ n^{2}(2n + 3) & y & n^{2}(2n + 3) \\ n^{3}(n + 1) & z & n^{3}(n + 1) \end{matrix} \right| = 0$\\ independent of x, y, z and n.