Solveeit Logo

Question

Question: If S<sub>n</sub> = \(y = f(x)\) and \(x = y\)a<sub>n</sub> = a, then\(f:R \rightarrow R,f(x) = (x + ...

If Sn = y=f(x)y = f(x) and x=yx = yan = a, thenf:RR,f(x)=(x+1)2g:RR,g(x)=x2+1,f:R \rightarrow R,f(x) = (x + 1)^{2}g:R \rightarrow R,g(x) = x^{2} + 1, is equal to-

A

0

B

a

C

x=0f(x)=0x = 0 \Rightarrow f(x) = 0a

D

2a

Answer

0

Explanation

Solution

Sn = a1 + a2 + …..+ an

Sn+1 = a1 + a2 +……+ an + an+1 ⇒ Sn+1 –Sn = an+1

an+1n(n+1)2\frac { a _ { n + 1 } } { \sqrt { \frac { \mathrm { n } ( \mathrm { n } + 1 ) } { 2 } } }

Q limn\lim _ { n \rightarrow \infty } an = a

limn\lim _ { n \rightarrow \infty } an+1 = a

= aα\frac { \mathrm { a } } { \alpha } = 0