Solveeit Logo

Question

Question: If S<sub>n</sub> =\(\left\lbrack \frac{1}{2n} + \frac{1}{\sqrt{4n^{2} - 1}} + \frac{1}{\sqrt{4n^{2} ...

If Sn =[12n+14n21+14n24+....+13n2+2n1]\left\lbrack \frac{1}{2n} + \frac{1}{\sqrt{4n^{2} - 1}} + \frac{1}{\sqrt{4n^{2} - 4}} + .... + \frac{1}{\sqrt{3n^{2} + 2n - 1}} \right\rbrack

then limn\lim_{n \rightarrow \infty}Sn is equal to -

A

π4\frac{\pi}{4}

B

π6\frac{\pi}{6}

C

π3\frac{\pi}{3}

D

π2\frac{\pi}{2}

Answer

π6\frac{\pi}{6}

Explanation

Solution

limn\lim_{n \rightarrow \infty} Sn

= limn\lim _ { n \rightarrow \infty } [14n20+14n212+14n222+...+14n2(n1)2]\left\lbrack \frac{1}{\sqrt{4n^{2} - 0}} + \frac{1}{\sqrt{4n^{2} - 1^{2}}} + \frac{1}{\sqrt{4n^{2} - 2^{2}}} + ... + \frac{1}{\sqrt{4n^{2} - (n - 1)^{2}}} \right\rbrack

= limn\lim_{n \rightarrow \infty}

= 12\frac{1}{2} limn\lim _ { n \rightarrow \infty } ·

=12\frac { 1 } { 2 } 0111(x2)2\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 1 - \left( \frac { x } { 2 } \right) ^ { 2 } } } dx = 12\frac{1}{2}. [2sin1x2]01\left[ 2 \sin ^ { - 1 } \frac { x } { 2 } \right] _ { 0 } ^ { 1 } = π6\frac { \pi } { 6 } .

Hence (2) is the correct answer.