Solveeit Logo

Question

Question: If S<sub>n</sub> denote the sum of first n terms of an A.P. and f(n) = \(\frac{S_{3n}}{S_{2n} - S_{n...

If Sn denote the sum of first n terms of an A.P. and f(n) = S3nS2nSn\frac{S_{3n}}{S_{2n} - S_{n}}, then Limn\operatorname { Lim } _ { n \rightarrow \infty } r=12nf(r)n\sum_{r = 1}^{2n}\frac{f(r)}{n} is equal to

A

6

B

3

C

2

D

0

Answer

6

Explanation

Solution

S3n = 3n2\frac{3n}{2} [2a + (3n – 1)d]

S2n = 2n2\frac{2n}{2} [2a + (2n – 1) d]

Sn­ = n2\frac{n}{2} [2a + (n – 1)d]

S2n – Sn = n2\frac{n}{2} [2a + (3n – 1)d]

S3nS2nSn\frac{S_{3n}}{S_{2n} - S_{n}} = 3 = f(n)

S = Limx\underset{x \rightarrow \infty}{Lim} 1nr=12nf(r)\frac{1}{n}\sum_{r = 1}^{2n}{f(r)} = Limn\underset{n \rightarrow \infty}{Lim} 3(2nn)\left( \frac{2n}{n} \right) = 6