Solveeit Logo

Question

Question: If $\sqrt{x+y}+\sqrt{y-x}=5$, then $25\frac{d^2y}{dx^2}$ is equal to...

If x+y+yx=5\sqrt{x+y}+\sqrt{y-x}=5, then 25d2ydx225\frac{d^2y}{dx^2} is equal to

Answer

2

Explanation

Solution

To find 25d2ydx225\frac{d^2y}{dx^2}, we first need to find an explicit expression for yy in terms of xx from the given equation.

Given equation: x+y+yx=5\sqrt{x+y}+\sqrt{y-x}=5

Step 1: Simplify the equation to express yy in terms of xx. Square both sides of the equation: (x+y+yx)2=52(\sqrt{x+y}+\sqrt{y-x})^2 = 5^2 Using the identity (a+b)2=a2+b2+2ab(a+b)^2 = a^2+b^2+2ab: (x+y)+(yx)+2(x+y)(yx)=25(x+y) + (y-x) + 2\sqrt{(x+y)(y-x)} = 25 2y+2y2x2=252y + 2\sqrt{y^2-x^2} = 25

Isolate the square root term: 2y2x2=252y2\sqrt{y^2-x^2} = 25 - 2y

Square both sides again: (2y2x2)2=(252y)2(2\sqrt{y^2-x^2})^2 = (25 - 2y)^2 4(y2x2)=625100y+4y24(y^2-x^2) = 625 - 100y + 4y^2 4y24x2=625100y+4y24y^2 - 4x^2 = 625 - 100y + 4y^2

Cancel 4y24y^2 from both sides: 4x2=625100y-4x^2 = 625 - 100y

Rearrange the terms to solve for yy: 100y=625+4x2100y = 625 + 4x^2 y=625+4x2100y = \frac{625 + 4x^2}{100} y=625100+4x2100y = \frac{625}{100} + \frac{4x^2}{100} y=254+x225y = \frac{25}{4} + \frac{x^2}{25}

Step 2: Find the first derivative dydx\frac{dy}{dx}. Differentiate y=254+x225y = \frac{25}{4} + \frac{x^2}{25} with respect to xx: dydx=ddx(254)+ddx(x225)\frac{dy}{dx} = \frac{d}{dx}\left(\frac{25}{4}\right) + \frac{d}{dx}\left(\frac{x^2}{25}\right) dydx=0+125(2x)\frac{dy}{dx} = 0 + \frac{1}{25}(2x) dydx=2x25\frac{dy}{dx} = \frac{2x}{25}

Step 3: Find the second derivative d2ydx2\frac{d^2y}{dx^2}. Differentiate dydx=2x25\frac{dy}{dx} = \frac{2x}{25} with respect to xx: d2ydx2=ddx(2x25)\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{2x}{25}\right) d2ydx2=225\frac{d^2y}{dx^2} = \frac{2}{25}

Step 4: Calculate 25d2ydx225\frac{d^2y}{dx^2}. 25d2ydx2=25×22525\frac{d^2y}{dx^2} = 25 \times \frac{2}{25} 25d2ydx2=225\frac{d^2y}{dx^2} = 2