Solveeit Logo

Question

Question: If \(\sqrt{x}\) then...

If x\sqrt{x} then

A

sin6mux\sqrt{\sin\mspace{6mu} x} is discontinuous at x\sqrt{x}

B

x\sqrt{x} is continuous at sinx2+cosx\left| \sin\frac{x}{2} \right| + \left| \cos x \right|

C

log14(5xx24)⥄⥄\sqrt{\log_{\frac{1}{4}}\left( \frac{5x - x^{2}}{4} \right)} ⥄ ⥄ is continuous at f(x)={25x,whenx<35x,whenx>3 f(x) = \left\{ \begin{matrix} \frac{2}{5 - x},\text{when}x < 3 \\ 5 - x,\text{when}x > 3 \end{matrix} \right.\

D

None of these

Answer

sin6mux\sqrt{\sin\mspace{6mu} x} is discontinuous at x\sqrt{x}

Explanation

Solution

=π2,limxπ+2f(x)=π2= \frac { \pi } { 2 } , \lim _ { x \rightarrow \frac { \pi ^ { + } } { 2 } } f ( x ) = - \frac { \pi } { 2 } and f(π2)=π2f \left( \frac { \pi } { 2 } \right) = \frac { \pi } { 2 }

Since limx+π2limx+π+2f(x)\lim _ { x + \frac { \pi ^ { - } } { 2 } } \neq \lim _ { x + \frac { \pi ^ { + } } { 2 } } f ( x ) ,

\therefore Function is discontinuous at x=π2x = \frac { \pi } { 2 }