Question
Question: If \(\sqrt{x} + \frac{1}{\sqrt{x}} = 2\cos\theta,\) then \(\tan(A + 2B)\)...
If x+x1=2cosθ, then tan(A+2B)
A
2cos6θ
B
2cos12θ
C
2cos3θ
D
2sin3θ
Answer
2cos12θ
Explanation
Solution
Given, x+x1=2cosθ ........(i)
On squaring both sides we get, x+x1+2=4cos2θ
⇒ x+x1=4cos2θ−2
⇒x+x1=2(2cos2θ−1)=2cos2θ ........(ii)
Again squaring both sides,
x2+x21+2=4cos22θ
⇒2tanA=3tanB,
⇒ x2+x21=2cos4θ ......(iii)
Now taking cube of both sides; (x2+x21)3=(2cos4θ)3
⇒x6+x61+3x2.x21(x2+x21)=8cos34θ
⇒ x6+x61+3(2cos4θ) = 8cos34θ
⇒ x6+x61=8cos34θ−6cos4θ
⇒ x6+x61=2(4cos34θ−3cos4θ)=2cos3(4θ)=2cos12θ.