Solveeit Logo

Question

Question: If \(\sqrt{x} + \frac{1}{\sqrt{x}} = 2\cos\theta,\) then \(\tan(A + 2B)\)...

If x+1x=2cosθ,\sqrt{x} + \frac{1}{\sqrt{x}} = 2\cos\theta, then tan(A+2B)\tan(A + 2B)

A

2cos6θ2\cos 6\theta

B

2cos12θ2\cos 12\theta

C

2cos3θ2\cos 3\theta

D

2sin3θ2\sin 3\theta

Answer

2cos12θ2\cos 12\theta

Explanation

Solution

Given, x+1x=2cosθ\sqrt{x} + \frac{1}{\sqrt{x}} = 2\cos\theta ........(i)

On squaring both sides we get, x+1x+2=4cos2θx + \frac{1}{x} + 2 = 4\cos^{2}\theta

x+1x=4cos2θ2x + \frac{1}{x} = 4\cos^{2}\theta - 2

x+1x=2(2cos2θ1)=2cos2θ\Rightarrow x + \frac{1}{x} = 2(2\cos^{2}\theta - 1) = 2\cos 2\theta ........(ii)

Again squaring both sides,

x2+1x2+2=4cos22θx^{2} + \frac{1}{x^{2}} + 2 = 4\cos^{2}2\theta

2tanA=3tanB,2\tan A = 3\tan B,

x2+1x2=2cos4θx^{2} + \frac{1}{x^{2}} = 2\cos 4\theta ......(iii)

Now taking cube of both sides; (x2+1x2)3=(2cos4θ)3\left( x^{2} + \frac{1}{x^{2}} \right)^{3} = (2\cos 4\theta)^{3}

x6+1x6+3x2.1x2(x2+1x2)=8cos34θx^{6} + \frac{1}{x^{6}} + 3x^{2}.\frac{1}{x^{2}}\left( x^{2} + \frac{1}{x^{2}} \right) = 8\cos^{3}4\theta

x6+1x6+3(2cos4θ)x^{6} + \frac{1}{x^{6}} + 3(2\cos 4\theta) = 8cos34θ8\cos^{3}4\theta

x6+1x6=8cos34θ6cos4θx^{6} + \frac{1}{x^{6}} = 8\cos^{3}4\theta - 6\cos 4\theta

x6+1x6=2(4cos34θ3cos4θ)=2cos3(4θ)=2cos12θx^{6} + \frac{1}{x^{6}} = 2(4\cos^{3}4\theta - 3\cos 4\theta) = 2\cos 3(4\theta) = 2\cos 12\theta.