Solveeit Logo

Question

Question: If \|\(\sqrt{2}\)z – 3 + 2i \| = \| z \| \(\left| \sin\left( \frac{\pi}{4} + \arg z_{1} \right) + \c...

If |2\sqrt{2}z – 3 + 2i | = | z | sin(π4+argz1)+cos(3π4argz1)\left| \sin\left( \frac{\pi}{4} + \arg z_{1} \right) + \cos\left( \frac{3\pi}{4} - \arg z_{1} \right) \right|,

Where z1 = 1 + 13\frac{1}{\sqrt{3}}i, then locus of z is

A

Pair of straight lines

B

Circle

C

Parabola

D

Ellipse

Answer

Circle

Explanation

Solution

Sol. arg (z1) = π6\frac{\pi}{6}

Ž sin (π4+argz1)\left( \frac{\pi}{4} + \arg z_{1} \right)+ cos(3π4argz1)=12\left( \frac{3\pi}{4} - \arg z_{1} \right) = \frac{1}{\sqrt{2}}

\ | 2\sqrt{2} z – 3 + 2i | = | z | 12\frac{1}{\sqrt{2}}

Ž z32i2z=12\begin{matrix} \frac{z - \frac{3 - 2i}{\sqrt{2}}}{z} \end{matrix} = \frac{1}{2}

which represents a circle