Solveeit Logo

Question

Question: If \((\sqrt{2},\infty)\) and \(x^{2} + 2ax + 10 - 3a > 0\) are the roots of the equation \(x \in R\)...

If (2,)(\sqrt{2},\infty) and x2+2ax+103a>0x^{2} + 2ax + 10 - 3a > 0 are the roots of the equation xRx \in R, then 5<a<2- 5 < a < 2=

A

a<5a < - 5

B

a>5a > 5

C

2<a<52 < a < 5

D

x44x3+6x24x+1=0x^{4} - 4x^{3} + 6x^{2} - 4x + 1 = 0

Answer

a<5a < - 5

Explanation

Solution

Given equation p2=4q1p^{2} = 4q - 1, therefor

(5+2)x2(4+5)x+8+25=0(5 + \sqrt{2})x^{2} - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0 and x2bx+c=0x^{2} - bx + c = 0

Now b24cb^{2} - 4c.