Solveeit Logo

Question

Mathematics Question on Differential equations

If y=cos1x,\sqrt{y}=cos^{-1}x, then it satisfies the differential equation (1x2)xdydx=c,\left(1-x^{2}\right)-x \frac{dy}{dx}=c, where cc is equal to

A

00

B

33

C

11

D

22

Answer

22

Explanation

Solution

Given, y=cos1x\sqrt{y}=\cos ^{-1} x
y=(cos1x)2\Rightarrow y=\left(\cos ^{-1} x\right)^{2}
On differentiating both sides w.r.t. xx, we get
dydx=2(cos1x)×11x2\frac{d y}{d x}=2\left(\cos ^{-1} x\right) \times \frac{-1}{\sqrt{1-x^{2}}}
Again, differentiating both sides w.r.t. xx, we get
d2ydx2=21x2×11x2cos1x×(12)(2x)(1x2)1/2(1x2)2\frac{d^{2} y}{d x^{2}}=-2 \frac{\sqrt{1-x^{2}} \times \frac{-1}{\sqrt{1-x^{2}}}-\cos ^{-1} x \times\left(\frac{1}{2}\right) \frac{(-2 x)}{\left(1-x^{2}\right)^{1 / 2}}}{\left(\sqrt{1-x^{2}}\right)^{2}}
=2[1+xcos1x(1x2)1/2(1x2)]=-2\left[\frac{-1+\frac{x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]
d2ydx2=[22xcos1x(1x2)1/2(1x2)]\frac{d^{2} y}{d x^{2}}=\left[\frac{2-\frac{2 x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]
(1x2)d2ydx2=2+xdydx\Rightarrow \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2+x \frac{d y}{d x}
(1x2)d2ydx2xdydx=2\Rightarrow \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2
But, it is given
(1x2)d2ydx2xdydx=c\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=c
c=2\therefore c=2