Solveeit Logo

Question

Mathematics Question on complex numbers

If x+iy=±(a+ib),\sqrt{x+iy}=\pm (a+ib), then xiy\sqrt{-x-iy} is equal to

A

±(b+ia)\pm (b+ia)

B

±(aib)\pm (a-ib)

C

(ai+b)(ai+b)

D

±(bia)\pm (b-ia)

Answer

±(bia)\pm (b-ia)

Explanation

Solution

Given, x+iy=±(a+bi)\sqrt{x+iy}=\pm (a+bi)
\Rightarrow x+iy=a2b2+2iabx+iy={{a}^{2}}-{{b}^{2}}+2iab
\Rightarrow x=a2b2,y=2abx={{a}^{2}}-{{b}^{2}},y=2ab
xiy=(a2b2)2iab\therefore \,\,\,\,\sqrt{-x-iy}=\,\sqrt{-({{a}^{2}}-{{b}^{2}})-2\,iab}
=b2a22iab=(bia)2=\sqrt{{{b}^{2}}-{{a}^{2}}-2iab}\,=\sqrt{{{(b-ia)}^{2}}}
=±(bia)=\pm \,(b-ia)