Solveeit Logo

Question

Question: If \[\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \cos ecA = \cot A\], then \[{\mathbf{A}}\], \[{\ma...

If 1+cosA1cosA=cosecA=cotA\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \cos ecA = \cot A, then A{\mathbf{A}}, A{\mathbf{A}}lies in the quadrants.
(A) I, II
(B) II, III
(C) I, III
(D) I, IV

Explanation

Solution

Trigonometric functions are used in this problem. So, firstly we all solve the left-hand side separately, and then we need to compare it to the right-hand side of the given problem.
Now, we know that all the Trigonometric ratios are positive in 1st{1^{st}}a quadrant, only sinθ\operatorname{sin} \theta and cosecθ\operatorname{cos} ec\theta are positive in IIIIthe quadrant, only tanθ\operatorname{tan} \theta and cotθcot\theta are positive in IIIIII the quadrant, only Cosθ\operatorname{Cos} \theta & secθ\operatorname{sec} \theta are positive in IVIV the quadrant.

Complete step-by-step answer:
Step 1: Take the left had the side of the given
Problem i.e.
1+cosA1cosA\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}}
Step 2: Multiply the numerator & denominator (1+cosA)(1 + \cos A)inside the square root.
i.e. 1+cosA1cosA=(1+cosA)2(1cosA)(1+cosA)\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{(1 - \cos A)(1 + \cos A)}}}
Step 3: On solving the denominator using the identity (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2} , we get.
\Rightarrow 1+cosA1cosA=(1+cosA)21cos2A\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{1 - {{\cos }^2}A}}}
Step 4: We know that, 1cos2Asin2A1 - {\cos ^2}A - {\sin ^2}A
Because, sin2Acos2A=1{\sin ^2}A - {\cos ^2}A = 1
On putting the value of sin2A{\sin ^2}Ain the, we get
\Rightarrow 1+cosA1cosA=(1+cosA)2sin2A\sqrt {\dfrac{{1 + \cos A}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}}
Step 5: On rearranging the terms, we get
\Rightarrow (1+cosA)21cosA=(1+cosA)2sin2A\sqrt {\dfrac{{{{\left( {1 + \cos A} \right)}^2}}}{{1 - \cos A}}} = \sqrt {\dfrac{{{{(1 + \cos A)}^2}}}{{{{\sin }^2}A}}}
Step 6: We know that, 1sinθ=cosecθ\dfrac{1}{{\sin \theta }} = \cos ec\theta
and cosθsinθ=cotθ\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta
On putting these values, we get
\Rightarrow 1+cosA1cosA=(cosecA+cotA)2\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \sqrt {{{\left( {\cos ecA + \cot A} \right)}^2}}
=cosecA+cotA= \left| {\cos ecA + \cot A} \right|
Step 7: Now according to us,
\Rightarrow 1+cosA1cosA=cosecA+cotA\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \left| {\cos ecA + \cot A} \right|
But, according to the given problem,
\Rightarrow 1+cosA1cosA=cosecA+cotA\dfrac{{\sqrt {1 + \cos A} }}{{1 - \cos A}} = \cos ecA + \cot A
Step 8: Therefore,
\Rightarrow cosecA+cotA=cosecA+cotA\left| {\cos ecA + \cot A} \right| = \cos ecA + \cot A
Considering cosecA+cotA=x\cos ecA + \cot A = x
i.e. x=x\left| x \right| = x if and only if x0x \geqslant 0
Step 9: That means,
\Rightarrow x=cosecA+cotA0x = \cos ecA + \cot A \geqslant 0
This implies, sinA>0\sin A > 0
Which is possible if AA lies either in IIquadrant or IIIIquadrant.

Note: There are 44 quadrants in the Trigonometry. In which all the trigonometric ratios are positive in the Ist{I^{st}} one whereas pairs of trigonometric ratios are positive in the rest of the quadrants.
In the IIquad, θ\theta lies between 00 to π2\dfrac{\pi }{2}. In the IIII quad, θ\theta lies between π2\dfrac{\pi }{2} to π\pi . In the IIIIII quad, θ\theta lies between π\pi to 3π2\dfrac{{3\pi }}{2}. In the IVIV quad, θ\theta lies between 3π2\dfrac{{3\pi }}{2} to 2π2\pi .
Modulus of xx will be equal to xx itself, if and only if xx is positive or zero. Hence the correct options are (A)(A) I,III,IIquadrant.