Solveeit Logo

Question

Physics Question on Motion in a plane

If A2+B2\sqrt{A^{2}+B^{2}} represents the magnitude of resultant of two vectors (A+B)(A + B) and (AB)(A - B), then the angle between two vectors is

A

cos1[2(A2B2)(A2+B2)]cos^{-1}\left[-\frac{2\left(A^{2}-B^{2}\right)}{\left(A^{2}+B^{2}\right)}\right]

B

cos1[A2B2A2B2]cos^{-1}\left[-\frac{A^{2}-B^{2}}{A^{2}\,B^{2}}\right]

C

cos1[(A2+B2)2(A2B2)]cos^{-1}\left[-\frac{\left(A^{2}+B^{2}\right)}{2\left(A^{2}-B^{2}\right)}\right]

D

cos1[(A2B2)A2+B2]cos^{-1}\left[-\frac{\left(A^{2}-B^{2}\right)}{A^{2}+B^{2}}\right]

Answer

cos1[(A2+B2)2(A2B2)]cos^{-1}\left[-\frac{\left(A^{2}+B^{2}\right)}{2\left(A^{2}-B^{2}\right)}\right]

Explanation

Solution

The correct option is(D):

As we know that the magnitude of the resultant of two vectors XX and YY,
R2=X2+Y2+2XYcosθR^{2}=X^{2}+Y^{2}+2 X Y \cos \theta...(i)
where, θ\theta is the angle between XX and YY. Putting, X=(A+B)X=(A+B)
Y=(AB)Y=(A-B)
and R=A2+B2R=\sqrt{A^{2}+B^{2}} in E (i), we get
A2+B2=(A+B)2+(AB)2+2(A+B)(AB)cosθA^{2}+B^{2}=(A+B)^{2}+(A-B)^{2}+2(A+B)(A-B) \cos \theta
A2+B2=A2+B2+2AB+A2\Rightarrow A^{2}+B^{2}=A^{2}+B^{2}+2 A B+A^{2}
+B22AB+2(A2B2)cosθ+B^{2}-2 A B+2\left(A^{2}-B^{2}\right) \cos \theta
(A2+B2)2(A2B2)=cosθ\Rightarrow \frac{-\left(A^{2}+B^{2}\right)}{2\left(A^{2}-B^{2}\right)}=\cos \theta
we get, θ=cos1[(A2+B2)2(A2B2)]\theta=\cos ^{-1}\left[-\frac{\left(A^{2}+B^{2}\right)}{2\left(A^{2}-B^{2}\right)}\right]