Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If (5+3i)33=249z,{{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z, then modulus of the complex number zz is equal to

A

1

B

2\sqrt{2}

C

222\sqrt{2}

D

4

Answer

2\sqrt{2}

Explanation

Solution

Given, (5+3i)33=249z{{(\sqrt{5}+\sqrt{3}i)}^{33}}={{2}^{49}}z Let 5=rcosθ,3=rsinθ\sqrt{5}=r\cos \theta ,\sqrt{3}=r\sin \theta
\therefore r2=5+3{{r}^{2}}=5+3
\Rightarrow r=22r=2\sqrt{2}
\therefore (rcosθ+irsinθ)33=249z{{(r\cos \theta +ir\sin \theta )}^{33}}={{2}^{49}}z
\Rightarrow r33(cos33θ+isin33θ)=249z|{{r}^{33}}(cos33\theta +i\sin 33\theta )=|{{2}^{49}}z|
\Rightarrow (22)33cos33θ+isin33θ=249z{{(2\sqrt{2})}^{33}}|\cos 33\theta +i\sin 33\theta |={{2}^{49}}|z|
\Rightarrow 2992(1)=249z{{2}^{\frac{99}{2}}}(1)={{2}^{49}}|z|
\Rightarrow z=299249|z|={{2}^{\frac{99}{2}-49}}
\Rightarrow z=2|z|=\sqrt{2}