Question
Question: If\[\sqrt 3 \sin \theta = \cos \theta \], find the value of \[\dfrac{{\sin \theta \tan \theta \left(...
If3sinθ=cosθ, find the value of sinθ+cosθsinθtanθ(1+cosθ)
Solution
Write the value of the trigonometric functions. The trigonometric function is the function that relates the ratio of the length of two sides with the angles of the right-angled triangle widely used in navigation, oceanography, the theory of periodic functions, and projectiles.
Commonly used trigonometric functions are the sine, the cosine, and the tangent, whereas the cosecant, the secant, the cotangent are their reciprocal, respectively. The value of these functions can be determined by the relation of the sides of a right-angled triangle where sine function is the ratio of perpendicular (P) and hypotenuses (H) of the triangle sinθ = hypotenusesperpendicular. Cosine is the ratio of the base (B) and hypotenuses (H) of the triangle cosθ = hypotenusesbase; the tangent is the ratio of the perpendicular (P) and base (B) of the triangle tanθ = baseperpendicular , whereas cosecθ, secθ and cotθ are their inverse respectively. The given value determines the value of these functions.
Complete step by step solution:
Function | sinθ | cosθ | tanθ |
---|---|---|---|
0 | 0 | 1 | 0 |
300 | 21 | 23 | 31 |
450 | 21 | 21 | 1 |
600 | 23 | 21 | 3 |
900 | 1 | 0 | Indeterminate |
From the given relation3sinθ=cosθ we can write it as
\sqrt 3 \sin \theta = \cos \theta \\\ \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\\ \tan \theta = \dfrac{1}{{\sqrt 3 }} \\\ $$[Since$$\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $$] Hence the value $$\theta $$ of will be equal to\tan \theta = \dfrac{1}{{\sqrt 3 }} \\
\theta = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) \\
\theta = {30^ \circ } \\
\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + {\text{cos}}\theta }} = \dfrac{{\sin {{30}^ \circ }\tan {{30}^ \circ }\left( {1 + \cos {{30}^ \circ }} \right)}}{{\sin {{30}^ \circ } + \cos {{30}^ \circ }}} \\
= \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right)}}{{\left( {\dfrac{1}{2}} \right) + \left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
= \dfrac{{\left( {\dfrac{1}{{2\sqrt 3 }}} \right)\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{4\sqrt 3 }} \times \dfrac{2}{{\left( {1 + \sqrt 3 } \right)}} \\
= \dfrac{{\left( {2 + \sqrt 3 } \right)}}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\