Solveeit Logo

Question

Question: If \(\sqrt 3 \sin \theta = \cos \theta \) , find the value of \(\dfrac{{\sin \theta \tan \theta \lef...

If 3sinθ=cosθ\sqrt 3 \sin \theta = \cos \theta , find the value of sinθtanθ(1+cosθ)sinθ+cosθ\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} .

Explanation

Solution

Firstly, find the values of sinθ\sin \theta and cosθ\cos \theta , using the relation 3sinθ=cosθ\sqrt 3 \sin \theta = \cos \theta .
Then, substitute the values of sinθ,cosθ,tanθ\sin \theta ,\cos \theta ,\tan \theta in sinθtanθ(1+cosθ)sinθ+cosθ\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} , to get the required answer.

Complete step-by-step answer:
It is given that, 3sinθ=cosθ\sqrt 3 \sin \theta = \cos \theta .

sinθcosθ=13 tanθ=13 θ=tan113 θ=30  \therefore \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \tan \theta = \dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \theta = 30^\circ \\\

Now, we need to find the value of sinθtanθ(1+cosθ)sinθ+cosθ\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} . So, firstly we need to find the values of sinθ\sin \theta and cosθ\cos \theta by putting θ=30\theta = 30^\circ .
sinθ=sin30=12\Rightarrow \sin \theta = \sin 30^\circ = \dfrac{1}{2} and cosθ=cos30=32\cos \theta = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2} .
Thus, we get tanθ=13,sinθ=12\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2} and cosθ=32\cos \theta = \dfrac{{\sqrt 3 }}{2} .
Now, we will substitute the values tanθ=13,sinθ=12\tan \theta = \dfrac{1}{{\sqrt 3 }},\sin \theta = \dfrac{1}{2} and cosθ=32\cos \theta = \dfrac{{\sqrt 3 }}{2} in sinθtanθ(1+cosθ)sinθ+cosθ\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} , to get the required answer.
sinθtanθ(1+cosθ)sinθ+cosθ=(12)(13)(1+32)12+32 =123(2+32)1+32 =123×2+31+3 =2+323(1+3)  \Rightarrow \dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 3 }}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}}} \\\ = \dfrac{{\dfrac{1}{{2\sqrt 3 }}\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\\ = \dfrac{1}{{2\sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{1 + \sqrt 3 }} \\\ = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} \\\
Thus, we get the value sinθtanθ(1+cosθ)sinθ+cosθ=2+323(1+3)\dfrac{{\sin \theta \tan \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = \dfrac{{2 + \sqrt 3 }}{{2\sqrt 3 \left( {1 + \sqrt 3 } \right)}} .

Note: Important table to be remembered:

| 00^\circ | 3030^\circ | 4545^\circ | 6060^\circ | 9090^\circ
---|---|---|---|---|---
sinθ\sin \theta | 0| 12\dfrac{1}{2} | 12\dfrac{1}{{\sqrt 2 }} | 32\dfrac{{\sqrt 3 }}{2}| 1
cosecθ\operatorname{cosec} \theta | Indeterminate| 2| 2\sqrt 2 | 23\dfrac{2}{{\sqrt 3 }}| 1
cosθ\cos \theta | 1| 32\dfrac{{\sqrt 3 }}{2} | 12\dfrac{1}{{\sqrt 2 }}| 12\dfrac{1}{2}| 0
secθ\sec \theta | 1| 23\dfrac{2}{{\sqrt 3 }} | 2\sqrt 2 | 2| Indeterminate
tanθ\tan \theta | 0| 13\dfrac{1}{{\sqrt 3 }} | 1| 3\sqrt 3 | Indeterminate
cotθ\cot \theta | Indeterminate| 3\sqrt 3 | 1| 13\dfrac{1}{{\sqrt 3 }}| 0