Question
Question: If \(\sqrt 3 \sin \theta = \cos \theta \) , find the value of \(\dfrac{{\sin \theta \tan \theta \lef...
If 3sinθ=cosθ , find the value of sinθ+cosθsinθtanθ(1+cosθ) .
Solution
Firstly, find the values of sinθ and cosθ , using the relation 3sinθ=cosθ .
Then, substitute the values of sinθ,cosθ,tanθ in sinθ+cosθsinθtanθ(1+cosθ) , to get the required answer.
Complete step-by-step answer:
It is given that, 3sinθ=cosθ .
Now, we need to find the value of sinθ+cosθsinθtanθ(1+cosθ) . So, firstly we need to find the values of sinθ and cosθ by putting θ=30∘ .
⇒sinθ=sin30∘=21 and cosθ=cos30∘=23 .
Thus, we get tanθ=31,sinθ=21 and cosθ=23 .
Now, we will substitute the values tanθ=31,sinθ=21 and cosθ=23 in sinθ+cosθsinθtanθ(1+cosθ) , to get the required answer.
⇒sinθ+cosθsinθtanθ(1+cosθ)=21+23(21)(31)(1+23) =21+3231(22+3) =231×1+32+3 =23(1+3)2+3
Thus, we get the value sinθ+cosθsinθtanθ(1+cosθ)=23(1+3)2+3 .
Note: Important table to be remembered:
| 0∘ | 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
sinθ| 0| 21 | 21 | 23| 1
cosecθ| Indeterminate| 2| 2 | 32| 1
cosθ| 1| 23 | 21| 21| 0
secθ| 1| 32 | 2| 2| Indeterminate
tanθ| 0| 31 | 1| 3| Indeterminate
cotθ| Indeterminate| 3 | 1| 31| 0