Solveeit Logo

Question

Question: If \(\sqrt { 3 } \cos \theta + \sin \theta = \sqrt { 2 }\) , then general value of \(\theta\) is...

If 3cosθ+sinθ=2\sqrt { 3 } \cos \theta + \sin \theta = \sqrt { 2 } , then general value of θ\theta is

A

nπ+(1)nπ4n \pi + ( - 1 ) ^ { n } \frac { \pi } { 4 }

B

(1)nπ4π3( - 1 ) ^ { n } \frac { \pi } { 4 } - \frac { \pi } { 3 }

C

nπ+π4π3n \pi + \frac { \pi } { 4 } - \frac { \pi } { 3 }

D

nπ+(1)nπ4π3n \pi + ( - 1 ) ^ { n } \frac { \pi } { 4 } - \frac { \pi } { 3 }

Answer

nπ+(1)nπ4π3n \pi + ( - 1 ) ^ { n } \frac { \pi } { 4 } - \frac { \pi } { 3 }

Explanation

Solution

3cosθ+sinθ=2\sqrt { 3 } \cos \theta + \sin \theta = \sqrt { 2 } 32cosθ+12sinθ=12\Rightarrow \frac { \sqrt { 3 } } { 2 } \cos \theta + \frac { 1 } { 2 } \sin \theta = \frac { 1 } { \sqrt { 2 } }

sinπ3cosθ+cosπ3sinθ=12\Rightarrow \sin \frac { \pi } { 3 } \cos \theta + \cos \frac { \pi } { 3 } \sin \theta = \frac { 1 } { \sqrt { 2 } } sin(θ+π3)=sinπ4\Rightarrow \sin \left( \theta + \frac { \pi } { 3 } \right) = \sin \frac { \pi } { 4 } θ=nπ+(1)nπ4π3\Rightarrow \theta = n \pi + ( - 1 ) ^ { n } \frac { \pi } { 4 } - \frac { \pi } { 3 }.