Solveeit Logo

Question

Question: If \(\sqrt{- 1}\) is a purely imaginary number, then \(\left| \begin{aligned} & 6i - 3i1 \\ & 43i ...

If 1\sqrt{- 1} is a purely imaginary number, then 6i3i143i1203i\left| \begin{aligned} & 6i - 3i1 \\ & 43i - 1 \\ & 203i \end{aligned} \right| is equal to.

A

0

B

1

C

2

D

None of these

Answer

1

Explanation

Solution

Herec+ici=a+ib\frac{c + i}{c - i} = a + ib

c+ici=a+ib\frac{c + i}{c - i} = a + ib

As c2+1c2+1=a2+b2\frac{c^{2} + 1}{c^{2} + 1} = a^{2} + b^{2} is purely imaginary, we get

a2+b2=1\Rightarrow a^{2} + b^{2} = 1(x+iy)(12i)=1+i\overline{(x + iy)(1 - 2i)} = 1 + ixiy=1+i1+2ix+iy=1i12ix - iy = \frac{1 + i}{1 + 2i} \Rightarrow x + iy = \frac{1 - i}{1 - 2i}.