Solveeit Logo

Question

Question: If \(\sqrt{- 1}\) = i &ω is a non real cube root of unity then the value of determinant is- \(\left|...

If 1\sqrt{- 1} = i &ω is a non real cube root of unity then the value of determinant is- x+1ωω2ωx+ω21ω21x+ω\left| \begin{matrix} x + 1 & \omega & \omega^{2} \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix} \right|

A

x3

B

x3 – 1

C

x3 + 1

D

None of these

Answer

x3

Explanation

Solution

(x + 1 + ω + ω2) 111ωx+ω21ω21x+ω\left| \begin{matrix} 1 & 1 & 1 \\ \omega & x + \omega^{2} & 1 \\ \omega^{2} & 1 & x + \omega \end{matrix} \right|

= x[{x2 – (ω – ω2)2} – (1 – ω)(1 – ω2)]

= x3