Solveeit Logo

Question

Mathematics Question on Binomial theorem

If some three consecutive in the binomial expansion of (x+1)n(x + 1)^n is powers of xx are in the ratio 2:15:702 : 15 : 70, then the average of these three coefficient is :-

A

964

B

625

C

227

D

232

Answer

232

Explanation

Solution

nCr1nCr=215\frac{^{n}C_{r-1}}{^{n}C_{r}} = \frac{2}{15}
n!(r1)!(nr+1)!n!r!(nr)!=215\frac{\frac{n!}{\left(r-1\right)!\left(n-r+1\right)!}}{\frac{n!}{r!\left(n-r\right)!}} = \frac{2}{15}
rnr+1=215\frac{r}{n-r+1} = \frac{2}{15}
15r=2n2r+215r =2n-2r+2
17r=2n+217r = 2n+2
nCrnCr+1=1570\frac{^{n}C_{r}}{^{n}C_{r+1}} = \frac{15}{70}
n!r!(nr)!n!(r+1)!(nr1)!=314\frac{\frac{n!}{r!\left(n-r\right)!}}{\frac{n!}{\left(r+1\right)!\left(n-r-1\right)!}} = \frac{3}{14}
r+1nr=314\frac{r+1}{n-r} = \frac{3}{14}
14r+14=3n3r14r +14 =3n -3r
3n17r=143n - 17r =14
2n17r=2n=16\frac{2n-17r =- 2 }{n=16}
17r=34,r=217r=34, r = 2
16C1,16C2,16C3{^{16}C_{1}} , {^{16}C_{2}} , {^{16}C_{3}}
16C1+16C2+16C33=16+120+5603\frac{^{16}C_{1} + ^{16}C_{2} + ^{16}C_{3}}{3 } = \frac{16+120+560}{3}
680+163=6963=232\frac{680+16}{3} = \frac{696}{3} = 232