Solveeit Logo

Question

Question: If \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\math...

If ax+aaxa2dx,0<a<2=23aax+aaxa232a2A+B+c.\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\mathop {\\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \\} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c.Then
A) A=[(axa2+a22)ax+a2axa2]A = [\\{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2})\sqrt {ax + \mathop a\nolimits^2 \sqrt {ax - \mathop a\nolimits^2 } } \\} ]
B) B=log[(axa2+a22)+ax+aaxa2]B = \log [\\{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2}) + \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \\} ]
C) A=(axa2+a22)ax+aaxa2A = \\{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2})\sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \\}
D) B=logaxa2+a22ax+aaxa2B = \log \\{ \sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2}\sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \\}

Explanation

Solution

When there is (x2a2)\left( {\mathop x\nolimits^2 - \mathop a\nolimits^2 } \right) or (x2+a2)\left( {\mathop x\nolimits^2 + \mathop a\nolimits^2 } \right) in the integrant, then substitute x=asecθx = a\sec \theta or x=acosθx = a\cos \theta accordingly.
Familiarization with trigonometric identities is a must to solve the calculus problems
To simplify the integration, try to use the substitution method.
A glance at the substitution method is given below.
*Integration by substitution
The given integral f(x)dx\int {f\left( x \right)} dxcan be transformed into another form by changing the independent variable x to t by substitution x=g(t)x = g\left( t \right).
Consider I=I = f(x)dx\int {f\left( x \right)} dx
Put x=g(t)x = g\left( t \right) so that dxdt=g(t)\dfrac{{dx}}{{dt}} = g'\left( t \right)
We write dx=g'tdtdx=g(t)dtdx = g'\left( t \right)dt
Thus I=I = f(x)dx\int {f\left( x \right)} dx =f(g(t))g(t)dt = \int {f\left( {g\left( t \right)} \right)} g'\left( t \right)dt
Convert the quadratic equation in perfect square to apply the integration of a particular function.
Key rule: Either substitute in the integration whose derivative is present or convert into a perfect square whose integral is already defined.

Complete step-by-step answer:
Step 1: given that:
I = ax+aaxa2dx\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx= 2a32ax+aaxa232a2A+B+c\dfrac{2}{{\mathop a\nolimits^{\dfrac{3}{2}} }}\mathop {\\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \\} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c
Provided: 0<a<20 < a < 2
Step 2: To find
A and B
Step 3: solve the integration, I
I = ax+aaxa2dx\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx
Let x=asec2θx = a\mathop {\sec }\nolimits^2 \theta
On differentiating both sides, we get
We know, d(secx)dx=secxtanx\dfrac{{d\left( {\sec x} \right)}}{{dx}} = \sec x\tan x
dx=2asecθsecθtanθ dθ  =2asec2θtanθ dθ  dx = 2a\sec \theta \cdot \sec \theta \tan \theta {\text{ }}d\theta \\\ {\text{ }} = 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta \\\
On substituting, the integration becomes
aasec2θ+aaasec2a22asec2θtanθ dθ\Rightarrow \smallint \sqrt {a \cdot a\mathop {\sec }\nolimits^2 \theta + a\sqrt {a \cdot a\mathop {\sec }\nolimits^2 - \mathop a\nolimits^2 } } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
a2sec2θ+aa2(sec21)2asec2θtanθ dθ\Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\sec }\nolimits^2 - 1)} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
Using trigonometric identity: tan2θ+1=sec2θ\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta
 sec2θ1=tan2θ\mathop {\because {\text{ }}\sec }\nolimits^2 \theta - 1 = \mathop {\tan }\nolimits^2 \theta
a2sec2θ+aa2(tan2θ)2asec2θtanθ dθ\Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\tan }\nolimits^2 \theta )} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
We know, x2=x\sqrt {{x^2}} = x
a2sec2θ+a2tanθ2asec2θtanθ dθ\Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
Using trigonometric identity: tan2θ+1=sec2θ\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta
a2(tan2θ+1)+a2tanθ2asec2θtanθ dθ\Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1) + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
Taking a2{a^2} as common.
a2(tan2θ+1+tanθ)2asec2θtanθ dθ\Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
We know, a2=a\sqrt {{a^2}} = a, this a is multiplied with 2a.
2a2(tan2θ+1+tanθ)sec2θtanθ dθ\Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} \mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta
Differentiation of tanθ\tan \theta i.e. sec2θ\mathop {\sec }\nolimits^2 \theta is present outside the square root, hence simplify using substitution.
Take tanθ=t\tan \theta = t
On differentiating both sides, we get
sec2θ dθ=dt\mathop {\sec }\nolimits^2 \theta {\text{ }}d\theta = dt
On substituting, the integration becomes
2a2(t2+1+t) t dt\Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ t }}dt
Differentiation of (t2+1+t)(\mathop t\nolimits^2 + 1 + t) is 2t+12t + 1, if 2t+12t + 1 was present in the integral then we can use the substitution method.
Combine 2 with t, Add +1, -1 to t will not affect the integration.
a2(t2+1+t) (2t + 1 - 1) dt\Rightarrow \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1 - 1) }}dt
Separating the integration over 2t+12t + 1 and -1
I=a2(t2+1+t) (2t + 1)dta2(t2+1+t) dtI = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt - \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt
Let I1=a2(t2+1+t) (2t + 1)dt\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt
Differentiation of (t2+1+t)(\mathop t\nolimits^2 + 1 + t) i.e. 2t+12t + 1is present, hence simplify using substitution.
Take (t2+1+t)=τ(\mathop t\nolimits^2 + 1 + t) = \tau
On differentiating both sides, we get
(2t+1)dt=dτ\left( {2t + 1} \right)dt = d\tau
On substituting, the integration becomes
I1=a2τdτ\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt \tau d\tau
Using integration: xn=xn+1n+1\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}}

a2τ12+112+1+c1 a2τ3232+c1  \Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{1}{2} + 1} }}{{\dfrac{1}{2} + 1}} + \mathop c\nolimits_1 \\\ \Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{3}{2}} }}{{\dfrac{3}{2}}} + \mathop c\nolimits_1 \\\

Here, c1\mathop c\nolimits_1 is constant of integration
23a2τ32+c1\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop \tau \nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
Now, substituting back (t, x,) what we have let so far.
We know, τ=(t2+1+t)\tau = (\mathop t\nolimits^2 + 1 + t)
23a2(t2+t+1)32+c1\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop t\nolimits^2 + t + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
We know, t=tanθt = \tan \theta
I1=23a2(tan2θ+tanθ+1)32+c1{I_1} = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop {\tan }\nolimits^2 \theta + \tan \theta + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
We know, x=asec2θx = a\mathop {\sec }\nolimits^2 \theta

xa=sec2θ xa=tan2θ+1 tan2θ=xa1 tan2θ=xaa ...... (1) tanθ=xaa tanθ=axa2a ...... (2)  \Rightarrow \dfrac{x}{a} = \mathop {\sec }\nolimits^2 \theta \\\ \Rightarrow \dfrac{x}{a} = \mathop {\tan }\nolimits^2 \theta + 1 \\\ \Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{x}{a} - 1 \\\ \Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{{x - a}}{a}{\text{ }}......{\text{ (1)}} \\\ \Rightarrow \tan \theta = \sqrt {\dfrac{{x - a}}{a}} \\\ \Rightarrow \tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}......{\text{ (2)}} \\\

On substituting the values of tan2θ\mathop {\tan }\nolimits^2 \theta and tanθ\tan \theta in I1\mathop I\nolimits_1 , we get
I1=23a2(xaa+axa2a+1)32+c1\mathop I\nolimits_1 = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{x - a}}{a} + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
Canceling a which is common in numerator and denominator
23a2(a(xa)a2+aaxa2a2+1)32+c1\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{a(x - a)}}{{\mathop a\nolimits^2 }} + \dfrac{{a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
Taking LCM a2{a^2} and simplifying.

23a2(axa2+aaxa2+a2a2)32+c1 23a2(ax+aaxa2)32a2×32+c1 23a2(ax+aaxa2)32a3+c1  \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }}} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \\\ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^{2 \times \dfrac{3}{2}} }}}\nolimits^{} + \mathop c\nolimits_1 \\\ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^3 }} + \mathop c\nolimits_1 \\\

I1=23a(ax+aaxa2)32+c1\mathop I\nolimits_1 = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1
Let I2=a2(t2+1+t) dt\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt
Convert the quadratic equation (t2+t+1)(\mathop t\nolimits^2 + t + 1)in the form of (a+b)2\mathop {(a + b)}\nolimits^2
(t2+t+1)=(t2+t+1+1414)  =(t2+t+(12)2+34)  =[(t+12)2+34]  (\mathop t\nolimits^2 + t + 1) = (\mathop t\nolimits^2 + t + 1 + \dfrac{1}{4} - \dfrac{1}{4}) \\\ {\text{ }} = (\mathop t\nolimits^2 + t + \mathop {(\dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}) \\\ {\text{ }} = [\mathop {(t + \dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}] \\\
On substituting, the integration becomes
I2=a2[(t+12)2+34] dt\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} \right]} {\text{ }}dt
a2[(t+12)2+(32)2] dt\Rightarrow \mathop a\nolimits^2 \int {\sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \mathop {\left( {\dfrac{{\sqrt 3 }}{2}} \right)}\nolimits^2 } \right]} {\text{ }}dt}
Using the special integration of type x2+b2\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } }
x2+b2dx=12xx2+b2+b22logx+x2+b2+C\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } dx = \dfrac{1}{2}x\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } + \dfrac{{\mathop b\nolimits^2 }}{2}\log \left| {x + \sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \right| + C
On comparing : x=t+12; b=32x = t + \dfrac{1}{2};{\text{ }}b = \dfrac{{\sqrt 3 }}{2}
Hence, I2=a22(t+12)(t+12)2+34+a238log(t+12)+(t+12)2+34+C\mathop I\nolimits_2 = \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} } \right| + C
Simplifying the expressions under the square-roots

a22(t+12)(t2+t+1)+a238log(t+12)+(t2+t+1)+c2 a24(2t+1)(t2+t+1)+a238log(t+12)+(t2+t+1)+c2  \Rightarrow \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\\ \Rightarrow \dfrac{{\mathop a\nolimits^2 }}{4}\left( {2t + 1} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\\

Now, substituting back (t, x,) what we have let so far.
We know, t=tanθt = \tan \theta
tanθ=axa2a \tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}
Hence, t=axa2a t = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}
(t2+t+1)=(axa2a)2+axa2a+1(\mathop t\nolimits^2 + t + 1) = \mathop {\left( {\dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}} \right)}\nolimits^2 + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1
Simplify taking LCM a2{a^2}

=axa2+aaxa2+a2a2 =ax+aaxa2a2  = \dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }} \\\ = \dfrac{{ax + a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} \\\

On substituting values of tt and (t2+t+1)(\mathop t\nolimits^2 + t + 1) integration I2\mathop I\nolimits_2 ,
I2=a24[(2axa2a+1)ax+aaxa2a2]+3a38log[axa2a+12+ax+aaxa2a2]+c2{I_2} = \dfrac{{{a^2}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} }}{a} + 1} \right)\sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{\sqrt {ax - {a^2}} }}{a} + \dfrac{1}{2} + \sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + {c_2}
Cancel the common terms of numerator and denominator, in the second term the denominator 2a.
a24[(2axa2+aa)ax+aaxa2a]+3a38log[2axa22a+a2a+2ax+aaxa22a]+c2\Rightarrow \dfrac{{{{{a^2}}}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} + a}}{{{a}}}} \right)\dfrac{{\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{{a}}}} \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{2\sqrt {ax - {a^2}} }}{{2a}} + \dfrac{a}{{2a}} + \dfrac{{2\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{2a}}} \right] + {c_2}
Using the property of logarithm:
logab=logalogb\log \dfrac{a}{b} = \log a - \log b
[2axa2+a4ax+aaxa2]+3a28log[2axa2+a+2ax+aaxa2]3a28log(2a)+c2\Rightarrow \left[ {\dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] - \dfrac{{3{a^2}}}{8}\log (2a) + {c_2}
The term (3a28log(2a))\left( { - \dfrac{{3{a^2}}}{8}\log (2a)} \right) is constant, therefore combine it with integration constant c2{c_2}.
2axa2+a4ax+aaxa2+3a28log[2axa2+a+2ax+aaxa2]+c3\Rightarrow \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3
Where c3\mathop c\nolimits_3 is the integration of constants
We know, I=I1+I2I = \mathop I\nolimits_1 + \mathop I\nolimits_2
ax+aaxa2dx\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx
=23a(ax+aaxa2)32+c1= \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 +2axa2+a4ax+aaxa2+3a28log[2axa2+a+2ax+aaxa2]+c3+ \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3
=23a(ax+aaxa2)32  +2axa2+a4ax+aaxa2+3a28log[2axa2+a+2ax+aaxa2]+c= \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} \; + \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + c
Where c=c1+c3c = {c_1} + {c_3}
On comparing with the given solution:
ax+aaxa2dx,0<a<2=23aax+aaxa232a2A+B+c.\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\mathop {\\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \\} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c.
For the values of A and B options (B) and (C) is correct.

Final answer: For the values of A and B options (B) and (C) are correct.

Note: Carefully do the calculation, emphasize on each and every step. Especially while substituting the values of I1{I_1} and I2{I_2}
For instance, while using the special integration of particular functions of type x2+b2\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } ,
Compare with the integral judiciously, (x)2\mathop {\left( x \right)}\nolimits^2 implies the whole square of variable function and
(b)2\mathop {\left( b \right)}\nolimits^2 implies the whole square of constant function.