Question
Question: If \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\math...
If ∫ax+aax−a2dx,0<a<2=3a2ax+aax−a223−2a∣A+B∣+c.Then
A) A=[(ax−a2+2a2)ax+a2ax−a2]
B) B=log[(ax−a2+2a2)+ax+aax−a2]
C) A=(ax−a2+2a2)ax+aax−a2
D) B=logax−a2+2a2ax+aax−a2
Solution
When there is (x2−a2) or (x2+a2) in the integrant, then substitute x=asecθor x=acosθ accordingly.
Familiarization with trigonometric identities is a must to solve the calculus problems
To simplify the integration, try to use the substitution method.
A glance at the substitution method is given below.
*Integration by substitution
The given integral ∫f(x)dxcan be transformed into another form by changing the independent variable x to t by substitution x=g(t).
Consider I= ∫f(x)dx
Put x=g(t) so that dtdx=g′(t)
We write dx=g'tdtdx=g′(t)dt
Thus I= ∫f(x)dx =∫f(g(t))g′(t)dt
Convert the quadratic equation in perfect square to apply the integration of a particular function.
Key rule: Either substitute in the integration whose derivative is present or convert into a perfect square whose integral is already defined.
Complete step-by-step answer:
Step 1: given that:
I = ∫ax+aax−a2dx= a232ax+aax−a223−2a∣A+B∣+c
Provided: 0<a<2
Step 2: To find
A and B
Step 3: solve the integration, I
I = ∫ax+aax−a2dx
Let x=asec2θ
On differentiating both sides, we get
We know, dxd(secx)=secxtanx
dx=2asecθ⋅secθtanθ dθ =2asec2θtanθ dθ
On substituting, the integration becomes
⇒∫a⋅asec2θ+aa⋅asec2−a22asec2θtanθ dθ
⇒∫a2sec2θ+aa2(sec2−1)2asec2θtanθ dθ
Using trigonometric identity: tan2θ+1=sec2θ
∵ sec2θ−1=tan2θ
⇒∫a2sec2θ+aa2(tan2θ)2asec2θtanθ dθ
We know, x2=x
⇒∫a2sec2θ+a2tanθ2asec2θtanθ dθ
Using trigonometric identity: tan2θ+1=sec2θ
⇒∫a2(tan2θ+1)+a2tanθ2asec2θtanθ dθ
Taking a2 as common.
⇒∫a2(tan2θ+1+tanθ)2asec2θtanθ dθ
We know, a2=a, this a is multiplied with 2a.
⇒∫2a2(tan2θ+1+tanθ)sec2θtanθ dθ
Differentiation of tanθ i.e. sec2θ is present outside the square root, hence simplify using substitution.
Take tanθ=t
On differentiating both sides, we get
sec2θ dθ=dt
On substituting, the integration becomes
⇒∫2a2(t2+1+t) t dt
Differentiation of (t2+1+t) is 2t+1, if 2t+1 was present in the integral then we can use the substitution method.
Combine 2 with t, Add +1, -1 to t will not affect the integration.
⇒∫a2(t2+1+t) (2t + 1 - 1) dt
Separating the integration over 2t+1 and -1
I=∫a2(t2+1+t) (2t + 1)dt−∫a2(t2+1+t) dt
Let I1=∫a2(t2+1+t) (2t + 1)dt
Differentiation of (t2+1+t) i.e. 2t+1is present, hence simplify using substitution.
Take (t2+1+t)=τ
On differentiating both sides, we get
(2t+1)dt=dτ
On substituting, the integration becomes
I1=∫a2τdτ
Using integration: ∫xn=n+1xn+1
Here, c1 is constant of integration
⇒32a2τ23+c1
Now, substituting back (t, x,) what we have let so far.
We know, τ=(t2+1+t)
⇒32a2(t2+t+1)23+c1
We know, t=tanθ
I1=32a2(tan2θ+tanθ+1)23+c1
We know, x=asec2θ
On substituting the values of tan2θ and tanθ in I1, we get
I1=32a2(ax−a+aax−a2+1)23+c1
Canceling a which is common in numerator and denominator
⇒32a2(a2a(x−a)+a2aax−a2+1)23+c1
Taking LCM a2 and simplifying.
I1=3a2(ax+aax−a2)23+c1
Let I2=∫a2(t2+1+t) dt
Convert the quadratic equation (t2+t+1)in the form of (a+b)2
(t2+t+1)=(t2+t+1+41−41) =(t2+t+(21)2+43) =[(t+21)2+43]
On substituting, the integration becomes
I2=∫a2[(t+21)2+43] dt
⇒a2∫(t+21)2+(23)2 dt
Using the special integration of type ∫x2+b2
∫x2+b2dx=21xx2+b2+2b2logx+x2+b2+C
On comparing : x=t+21; b=23
Hence, I2=2a2(t+21)(t+21)2+43+8a23log(t+21)+(t+21)2+43+C
Simplifying the expressions under the square-roots
Now, substituting back (t, x,) what we have let so far.
We know, t=tanθ
tanθ=aax−a2
Hence, t=aax−a2
(t2+t+1)=(aax−a2)2+aax−a2+1
Simplify taking LCM a2
On substituting values of t and (t2+t+1) integration I2,
I2=4a2[(a2ax−a2+1)a2ax+aax−a2]+83a3log[aax−a2+21+a2ax+aax−a2]+c2
Cancel the common terms of numerator and denominator, in the second term the denominator 2a.
⇒4a2[(a2ax−a2+a)aax+aax−a2]+83a3log[2a2ax−a2+2aa+2a2ax+aax−a2]+c2
Using the property of logarithm:
logba=loga−logb
⇒[42ax−a2+aax+aax−a2]+83a2log[2ax−a2+a+2ax+aax−a2]−83a2log(2a)+c2
The term (−83a2log(2a)) is constant, therefore combine it with integration constant c2.
⇒42ax−a2+aax+aax−a2+83a2log[2ax−a2+a+2ax+aax−a2]+c3
Where c3 is the integration of constants
We know, I=I1+I2
∫ax+aax−a2dx
=3a2(ax+aax−a2)23+c1 +42ax−a2+aax+aax−a2+83a2log[2ax−a2+a+2ax+aax−a2]+c3
=3a2(ax+aax−a2)23+42ax−a2+aax+aax−a2+83a2log[2ax−a2+a+2ax+aax−a2]+c
Where c=c1+c3
On comparing with the given solution:
∫ax+aax−a2dx,0<a<2=3a2ax+aax−a223−2a∣A+B∣+c.
For the values of A and B options (B) and (C) is correct.
Final answer: For the values of A and B options (B) and (C) are correct.
Note: Carefully do the calculation, emphasize on each and every step. Especially while substituting the values of I1 and I2
For instance, while using the special integration of particular functions of type ∫x2+b2,
Compare with the integral judiciously, (x)2 implies the whole square of variable function and
(b)2 implies the whole square of constant function.