Solveeit Logo

Question

Question: If \(\sin(x + y) = \log(x + y)\), then \(\frac{dy}{dx}\)=...

If sin(x+y)=log(x+y)\sin(x + y) = \log(x + y), then dydx\frac{dy}{dx}=

A

2

B

– 2

C

1

D

– 1

Answer

– 1

Explanation

Solution

sin(x+y)=log(x+y)\sin(x + y) = \log(x + y)

Differentiating with respect to x,

cos(x+y)[1+dydx]=1x+y[1+dydx]\cos ( x + y ) \left[ 1 + \frac { d y } { d x } \right] = \frac { 1 } { x + y } \left[ 1 + \frac { d y } { d x } \right] [cos(x+y)1x+y][1+dydx]=0\left\lbrack \cos(x + y) - \frac{1}{x + y} \right\rbrack\left\lbrack 1 + \frac{dy}{dx} \right\rbrack = 0

\because cos(x+y)1x+y\cos(x + y) \neq \frac{1}{x + y} for any x and y. So, 1+dydx=01 + \frac{dy}{dx} = 0,

dydx=1\frac{dy}{dx} = - 1.

Trick: It is an implicit function, so

dydx=f/xf/y=cos(x+y)1x+ycos(x+y)1x+y=1\frac{dy}{dx} = - \frac{\partial f/\partial x}{\partial f/\partial y} = - \frac{\cos(x + y) - \frac{1}{x + y}}{\cos(x + y) - \frac{1}{x + y}} = - 1.