Solveeit Logo

Question

Question: If \(\sin\theta_{1} + \sin\theta_{2} + \sin\theta_{3} = 3,\) then \(\cos\theta_{1} + \cos\theta_{2} ...

If sinθ1+sinθ2+sinθ3=3,\sin\theta_{1} + \sin\theta_{2} + \sin\theta_{3} = 3, then cosθ1+cosθ2+cosθ3=\cos\theta_{1} + \cos\theta_{2} + \cos\theta_{3} =

A

3

B

2

C

1

D

0

Answer

0

Explanation

Solution

sinθ1+sinθ2+sinθ3=3\sin\theta_{1} + \sin\theta_{2} + \sin\theta_{3} = 3

sinθ1=sinθ2=sinθ3=1\Rightarrow \sin\theta_{1} = \sin\theta_{2} = \sin\theta_{3} = 1, (1sinx1)(\because - 1 \leq \sin x \leq 1)

θ1=θ2=θ3=π2cosθ1+cosθ2+cosθ3=0\Rightarrow \theta_{1} = \theta_{2} = \theta_{3} = \frac{\pi}{2} \Rightarrow \cos\theta_{1} + \cos\theta_{2} + \cos\theta_{3} = 0.