Solveeit Logo

Question

Question: If \(\sin\theta + \sin\varphi = a\)and \(\cos\theta + \cos\varphi = b,\) then \(\tan\frac{\theta - \...

If sinθ+sinφ=a\sin\theta + \sin\varphi = aand cosθ+cosφ=b,\cos\theta + \cos\varphi = b, then tanθφ2\tan\frac{\theta - \varphi}{2}is equal to

A

a2+b24a2b2\sqrt{\frac{a^{2} + b^{2}}{4 - a^{2} - b^{2}}}

B

4a2b2a2+b2\sqrt{\frac{4 - a^{2} - b^{2}}{a^{2} + b^{2}}}

C

a2+b24+a2+b2\sqrt{\frac{a^{2} + b^{2}}{4 + a^{2} + b^{2}}}

D

4+a2+b2a2+b2\sqrt{\frac{4 + a^{2} + b^{2}}{a^{2} + b^{2}}}

Answer

4a2b2a2+b2\sqrt{\frac{4 - a^{2} - b^{2}}{a^{2} + b^{2}}}

Explanation

Solution

Given that sinθ+sinφ=a\sin\theta + \sin\varphi = a …..(i)

and cosθ+cosφ=b\cos\theta + \cos\varphi = b …..(ii)

Squaring, sin2θ+sin2φ+2sinθsinφ=a2\sin^{2}\theta + \sin^{2}\varphi + 2\sin\theta\sin\varphi = a^{2}

and cos2θ+cos2φ+2cosθcosφ=b2\cos^{2}\theta + \cos^{2}\varphi + 2\cos\theta\cos\varphi = b^{2}

Adding, 2+ 2 (sinθsinφ+cosθcosφ)=a2+b2(\sin\theta\sin\varphi + \cos\theta\cos\varphi) = a^{2} + b^{2}

2cos(θφ)=a2+b222\cos(\theta - \varphi) = a^{2} + b^{2} - 2cos(θφ)=a2+b222\cos(\theta - \varphi) = \frac{a^{2} + b^{2} - 2}{2}

1tan2θφ21+tan2θφ2=a2+b222\Rightarrow \frac{1 - \tan^{2}\frac{\theta - \varphi}{2}}{1 + \tan^{2}\frac{\theta - \varphi}{2}} = \frac{a^{2} + b^{2} - 2}{2}

(a2+b2)+(a2+b2)tan2θφ222tan2θφ2(a^{2} + b^{2}) + (a^{2} + b^{2})\tan^{2}\frac{\theta - \varphi}{2} - 2 - 2\tan^{2}\frac{\theta - \varphi}{2}

=22tan2θφ2= 2 - 2\tan^{2}\frac{\theta - \varphi}{2}4a2b2a2+b2=tan2θφ2\frac{4 - a^{2} - b^{2}}{a^{2} + b^{2}} = \tan^{2}\frac{\theta - \varphi}{2}

tan(θφ)2=4a2b2a2+b2\tan\frac{(\theta - \varphi)}{2} = \sqrt{\frac{4 - a^{2} - b^{2}}{a^{2} + b^{2}}}

Trick : Put θ=π2,φ=0o\theta = \frac{\pi}{2},\varphi = 0^{o}, then a=1=ba = 1 = b

tanθφ2=1\tan\frac{\theta - \varphi}{2} = 1, which is given by (1) and (2).

Again putting θ=π4=φ\theta = \frac{\pi}{4} = \varphi, we get tanθφ2=0\tan\frac{\theta - \varphi}{2} = 0, which is given by (2).