Question
Question: If \(\sin\theta + \sin\varphi = a\)and \(\cos\theta + \cos\varphi = b,\) then \(\tan\frac{\theta - \...
If sinθ+sinφ=aand cosθ+cosφ=b, then tan2θ−φis equal to
A
4−a2−b2a2+b2
B
a2+b24−a2−b2
C
4+a2+b2a2+b2
D
a2+b24+a2+b2
Answer
a2+b24−a2−b2
Explanation
Solution
Given that sinθ+sinφ=a …..(i)
and cosθ+cosφ=b …..(ii)
Squaring, sin2θ+sin2φ+2sinθsinφ=a2
and cos2θ+cos2φ+2cosθcosφ=b2
Adding, 2+ 2 (sinθsinφ+cosθcosφ)=a2+b2
⇒2cos(θ−φ)=a2+b2−2⇒ cos(θ−φ)=2a2+b2−2
⇒1+tan22θ−φ1−tan22θ−φ=2a2+b2−2
⇒ (a2+b2)+(a2+b2)tan22θ−φ−2−2tan22θ−φ
=2−2tan22θ−φ ⇒a2+b24−a2−b2=tan22θ−φ
⇒ tan2(θ−φ)=a2+b24−a2−b2
Trick : Put θ=2π,φ=0o, then a=1=b
∴tan2θ−φ=1, which is given by (1) and (2).
Again putting θ=4π=φ, we get tan2θ−φ=0, which is given by (2).