Solveeit Logo

Question

Question: If \(\sin\theta + \sin 2\theta + \sin 3\theta = \sin\alpha\)and \(\cos\theta + \cos 2\theta + \cos ...

If sinθ+sin2θ+sin3θ=sinα\sin\theta + \sin 2\theta + \sin 3\theta = \sin\alphaand

cosθ+cos2θ+cos3θ=cosα\cos\theta + \cos 2\theta + \cos 3\theta = \cos\alpha, then θ is equal to

A

α/2\alpha/2

B

α\alpha

C

2α2\alpha

D

α/6\alpha/6

Answer

α/2\alpha/2

Explanation

Solution

sinθ+sin3θ+sin2θ=sinα\sin\theta + \sin 3\theta + \sin 2\theta = \sin\alpha

2sin2θcosθ+sin2θ=sinα2\sin 2\theta\cos\theta + \sin 2\theta = \sin\alpha

sin2θ(2cosθ+1)=sinα\sin 2\theta(2\cos\theta + 1) = \sin\alpha …..(i)

Now cosθ+cos3θ+cos2θ=cosα\cos\theta + \cos 3\theta + \cos 2\theta = \cos\alpha

2cos2θcosθ+cos2θ=cosα2\cos 2\theta\cos\theta + \cos 2\theta = \cos\alpha

.cos2θ(2cosθ+1)=cosα\cos 2\theta(2\cos\theta + 1) = \cos\alpha …..(ii)

From (i) and (ii), tan2θ=tanα\tan 2\theta = \tan\alpha2θ=α2\theta = \alphaθ=α/2\theta = \alpha/2.