Solveeit Logo

Question

Question: If \(\sin\theta = \frac{- 4}{5}\) and \(\theta\) lies in the third quadrant, then \(\cos\frac{\theta...

If sinθ=45\sin\theta = \frac{- 4}{5} and θ\theta lies in the third quadrant, then cosθ2=\cos\frac{\theta}{2} =

A

15\frac{1}{\sqrt{5}}

B

15- \frac{1}{\sqrt{5}}

C

25\sqrt{\frac{2}{5}}

D

25- \sqrt{\frac{2}{5}}

Answer

15- \frac{1}{\sqrt{5}}

Explanation

Solution

Given that sinθ=45\sin\theta = - \frac{4}{5}and θ\thetalies in the III quadrant.

cosθ=11625=±35\Rightarrow \cos\theta = \sqrt{1 - \frac{16}{25}} = \pm \frac{3}{5}

cosθ2=±1+cosθ2=13/52=±15\cos\frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos\theta}{2}} = \sqrt{\frac{1 - 3/5}{2}} = \pm \sqrt{\frac{1}{5}}

But cosθ2=15.\cos\frac{\theta}{2} = - \frac{1}{\sqrt{5}}. since θ2\frac{\theta}{2}will be in II quadrant.

Hence cosθ2=15\cos\frac{\theta}{2} = - \frac{1}{\sqrt{5}}.