Solveeit Logo

Question

Question: If \(\sin\theta + \cos\theta = x,\) then \(\sin^{6}\theta + \cos^{6}\theta = \frac{1}{4}\lbrack 4 - ...

If sinθ+cosθ=x,\sin\theta + \cos\theta = x, then sin6θ+cos6θ=14[43(x21)2]\sin^{6}\theta + \cos^{6}\theta = \frac{1}{4}\lbrack 4 - 3(x^{2} - 1)^{2}\rbrack for

A

All real x

B

x22x^{2} \leq 2

C

x22x^{2} \geq 2

D

None of these

Answer

x22x^{2} \leq 2

Explanation

Solution

On squaring the given relation

sin2θ=x211x22\sin 2\theta = x^{2} - 1 \leq 1 \Rightarrow x^{2} \leq 2

or 2x2- \sqrt{2} \leq x \leq \sqrt{2} [sin2θ1]\lbrack\because\sin 2\theta \leq 1\rbrack

Now sin6θ+cos6θ\sin^{6}\theta + \cos^{6}\theta

=(sin2θ+cos2θ)33sin2θcos2θ(sin2θ+cos2θ)= (\sin^{2}\theta + \cos^{2}\theta)^{3} - 3\sin^{2}\theta\cos^{2}\theta(\sin^{2}\theta + \cos^{2}\theta)

=13sin2θcos2θ=134sin22θ= 1 - 3\sin^{2}\theta\cos^{2}\theta = 1 - \frac{3}{4}\sin^{2}2\theta

=134(x21)2=14{43(x21)2}= 1 - \frac{3}{4}(x^{2} - 1)^{2} = \frac{1}{4}\{ 4 - 3(x^{2} - 1)^{2}\}

Thus the given result will hold true only when x22x^{2} \leq 2and not for all real values of x.