Question
Question: If \(\sin\theta + \cos\theta = x,\) then \(\sin^{6}\theta + \cos^{6}\theta = \frac{1}{4}\lbrack 4 - ...
If sinθ+cosθ=x, then sin6θ+cos6θ=41[4−3(x2−1)2] for
A
All real x
B
x2≤2
C
x2≥2
D
None of these
Answer
x2≤2
Explanation
Solution
On squaring the given relation
sin2θ=x2−1≤1⇒x2≤2
or −2≤x≤2 [∵sin2θ≤1]
Now sin6θ+cos6θ
=(sin2θ+cos2θ)3−3sin2θcos2θ(sin2θ+cos2θ)
=1−3sin2θcos2θ=1−43sin22θ
=1−43(x2−1)2=41{4−3(x2−1)2}
Thus the given result will hold true only when x2≤2and not for all real values of x.