Solveeit Logo

Question

Question: If \(\sin\theta + \cos\theta = m\)and \(\sec\theta + \text{cosec}\theta = n\), the\(n(m + 1)(m - 1) ...

If sinθ+cosθ=m\sin\theta + \cos\theta = mand secθ+cosecθ=n\sec\theta + \text{cosec}\theta = n, then(m+1)(m1)=n(m + 1)(m - 1) =

A

m

B

n

C

2m

D

2n

Answer

2m

Explanation

Solution

n(m21)=(secθ+cosecθ).2sinθcosθn(m^{2} - 1) = (\sec\theta + \text{cosec}\theta).2\sin\theta\cos\theta

(m2=1+2sinθcosθ\because m^{2} = 1 + 2\sin\theta\cos\theta)

=sinθ+cosθsinθ.cosθ.2sinθcosθ=2m= \frac{\sin\theta + \cos\theta}{\sin\theta.\cos\theta}.2\sin\theta\cos\theta = 2m.