Question
Question: If \(\sin(\theta + \alpha) = a\) and \(\sin(\theta + \beta) = b,\) then \(\cos 2(\alpha - \beta) - ...
If sin(θ+α)=a and sin(θ+β)=b, then
cos2(α−β)−4abcos(α−β) is equal to
A
1−a2−b2
B
1−2a2−2b2
C
2+a2+b2
D
2−a2−b2
Answer
1−2a2−2b2
Explanation
Solution
Given that sin(θ+α)=a …..(i)
and sin(θ+β)=b …..(ii)
Now, cos(θ+α)=1−a2⇒θ+α=cos−11−a2
and α−β=(θ+α)−(θ+β)
=cos−11−a2−cos−11−b2
⇒α−β=cos−1(1−a21−b2+ab)
⇒cos(α−β)=1−a21−b2+ab
Now, cos2(α−β)−4abcos(α−β)
=2cos2(α−β)−1−4abcos(α−β)
=2(1−a21−b2+ab)2−4ab(1−a21−b2+ab)−1
=2{(1−a2)(1−b2)+a2b2+2ab1−a21−b2}
−4ab(1−a21−b2+ab)
=2(1−b2−a2+a2b2)+2a2b2−4a2b2−1
=2(1−a2−b2)−1=1−2a2−2b2.