Solveeit Logo

Question

Question: If \(\sin(\theta + \alpha) = a\) and \(\sin(\theta + \beta) = b,\) then \(\cos 2(\alpha - \beta) - ...

If sin(θ+α)=a\sin(\theta + \alpha) = a and sin(θ+β)=b,\sin(\theta + \beta) = b, then

cos2(αβ)4abcos(αβ)\cos 2(\alpha - \beta) - 4ab\cos(\alpha - \beta) is equal to

A

1a2b21 - a^{2} - b^{2}

B

12a22b21 - 2a^{2} - 2b^{2}

C

2+a2+b22 + a^{2} + b^{2}

D

2a2b22 - a^{2} - b^{2}

Answer

12a22b21 - 2a^{2} - 2b^{2}

Explanation

Solution

Given that sin(θ+α)=a\sin(\theta + \alpha) = a …..(i)

and sin(θ+β)=b\sin(\theta + \beta) = b …..(ii)

Now, cos(θ+α)=1a2θ+α=cos11a2\cos(\theta + \alpha) = \sqrt{1 - a^{2}} \Rightarrow \theta + \alpha = \cos^{- 1}\sqrt{1 - a^{2}}

and αβ=(θ+α)(θ+β)\alpha - \beta = (\theta + \alpha) - (\theta + \beta)

=cos11a2cos11b2= \cos^{- 1}\sqrt{1 - a^{2}} - \cos^{- 1}\sqrt{1 - b^{2}}

αβ=cos1(1a21b2+ab)\Rightarrow \alpha - \beta = \cos^{- 1}(\sqrt{1 - a^{2}}\sqrt{1 - b^{2}} + ab)

cos(αβ)=1a21b2+ab\Rightarrow \cos(\alpha - \beta) = \sqrt{1 - a^{2}}\sqrt{1 - b^{2}} + ab

Now, cos2(αβ)4abcos(αβ)\cos{}2(\alpha - \beta) - 4ab\cos(\alpha - \beta)

=2cos2(αβ)14abcos(αβ)= 2\cos^{2}{}(\alpha - \beta) - 1 - 4ab\cos(\alpha - \beta)

=2(1a21b2+ab)24ab(1a21b2+ab)1= 2\left( \sqrt{1 - a^{2}}\sqrt{1 - b^{2}} + ab \right)^{2} - 4ab\left( \sqrt{1 - a^{2}}\sqrt{1 - b^{2}} + ab \right) - 1

=2{(1a2)(1b2)+a2b2+2ab1a21b2}= 2\{(1 - a^{2})(1 - b^{2}) + a^{2}b^{2} + 2ab\sqrt{1 - a^{2}}\sqrt{1 - b^{2}}\}

4ab(1a21b2+ab)- 4ab(\sqrt{1 - a^{2}}\sqrt{1 - b^{2}} + ab)

=2(1b2a2+a2b2)+2a2b24a2b21= 2(1 - b^{2} - a^{2} + a^{2}b^{2}) + 2a^{2}b^{2} - 4a^{2}b^{2} - 1

=2(1a2b2)1=12a22b2.= 2(1 - a^{2} - b^{2}) - 1 = 1 - 2a^{2} - 2b^{2}.