Question
Question: If sin<sup>–1</sup>x + sin<sup>–1</sup> y + sin<sup>–1</sup> z = p, then x<sup>4</sup> + y<sup>4</su...
If sin–1x + sin–1 y + sin–1 z = p, then x4 + y4 + z4 + 4x2y2z2 = k (x2y2 + y2z2 + z2x2), where k is equal to –
A
1
B
2
C
4
D
None of these
Answer
2
Explanation
Solution
We have sin–1 x + sin–1 y = p – sin–1 z
or, x + y
= z
or, x2 (1– y2) = z2 + y2 (1 – x2) – 2yz (1−x2)
or, (x2 – z2 – y2)2 = 4y2 z2 (1 – x2)
or, x4 + y4 + z4 – 2x2 z2 + 2y2 z2 – 2x2 y2 + 4x2 y2 z2 – 4y2 z2 =0
or, x4 + y4 + z4 + 4x2 y2 z2 = 2(x2 y2 + y2 z2 + z2 x2)
\ k = 2.