Solveeit Logo

Question

Question: If sin<sup>–1</sup> x + sin<sup>–1</sup>y + sin<sup>–1</sup>z = \(\frac { 3 \pi } { 2 }\)and f(1) = ...

If sin–1 x + sin–1y + sin–1z = 3π2\frac { 3 \pi } { 2 }and f(1) = 2, f(p +q) = f(p). f(q) " p, q Ī R, then

x+y+zxf(1)+yf(2)+zf(3)\frac { x + y + z } { x ^ { f ( 1 ) } + y ^ { f ( 2 ) } + z ^ { f ( 3 ) } }=

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

π2\frac { \pi } { 2 } £ sin–1 x £ π2\frac { \pi } { 2 }

\ sin–1 x + sin–1 y + sin– 1z = 3π2\frac { 3 \pi } { 2 }

Ū sin–1 x = sin–1 y = sin– 1z = π2\frac { \pi } { 2 }

Ū x = y = z = 1

Also f(p + q) = f(p). f(q) " p, q Ī R …(1)

Given f(1) = 1

from (1),

F(1 + 1) = f(1). F(1) Ž f(2) =12 = 1

from (2), f(2 + 1) = f(2) . f(1)

Ž f(3) = 12. 1 = 13 = 1

Now given expression = 3 – 33\frac { 3 } { 3 } = 2