Solveeit Logo

Question

Question: If sin<sup>–1</sup> x + sin<sup>–1</sup>y + sin<sup>–1</sup>z = \(\frac{3\pi}{2}\)and f(1) = 2, f(p...

If sin–1 x + sin–1y + sin–1z = 3π2\frac{3\pi}{2}and

f(1) = 2, f(p +q) = f(p). f(q) " p, q Î R, then

xf(1)+yf(2)+zf(3)x^{f(1)} + y^{f(2)} + z^{f(3)}x+y+zxf(1)+yf(2)+zf(3)\frac{x + y + z}{x^{f(1)} + y^{f(2)} + z^{f(3)}}=

A

0

B

1

C

2

D
Answer

2

Explanation

Solution

π2\frac{\pi}{2}£ sin–1 x £ π2\frac{\pi}{2}

\ sin–1 x + sin–1 y + sin– 1z = 3π2\frac{3\pi}{2}

Û sin–1 x = sin–1 y = sin– 1z = π2\frac{\pi}{2}

Û x = y = z = 1

Also f(p + q) = f(p). f(q) " p, q Î R …(1)

Given f(1) = 1

from (1),

F(1 + 1) = f(1). F(1) ̃ f(2) =12 = 1

from (2), f(2 + 1) = f(2) . f(1)

̃ f(3) = 12. 1 = 13 = 1

Now given expression = 3 – 33\frac{3}{3}= 2