Solveeit Logo

Question

Question: If \(\sinh x = \dfrac{3}{2}\), how do you find exact values of \(\cosh x\) and \(\tanh x\)?...

If sinhx=32\sinh x = \dfrac{3}{2}, how do you find exact values of coshx\cosh x and tanhx\tanh x?

Explanation

Solution

We will use some standard trigonometric identities and formulas to find the exact values of coshx\cosh x and tanhx\tanh x. To find coshx\cosh x we will use the relationship between sinh\sinh and cosh\cosh . And to find tanhx\tanh x we take the ratio of sinh\sinh and cosh\cosh .

Complete step by step answer:
We know that,
cosh2xsinh2x=1{\cosh ^2}x - {\sinh ^2}x = 1
Substituting the value of sinhx=32\sinh x = \dfrac{3}{2},
cosh2x(32)2=1{\cosh ^2}x - {\left( {\dfrac{3}{2}} \right)^2} = 1
Taking 32\dfrac{3}{2} to the right-hand side,
cosh2x=1+(32)2{\cosh ^2}x = 1 + {\left( {\dfrac{3}{2}} \right)^2}
Taking square of 32\dfrac{3}{2},
cosh2x=1+94{\cosh ^2}x = 1 + \dfrac{9}{4}
Taking L.C.M on right-hand side,
cosh2x=4+94{\cosh ^2}x = \dfrac{{4 + 9}}{4}
Adding the terms,
cosh2x=134{\cosh ^2}x = \dfrac{{13}}{4}
Taking square root on both sides,
coshx=134=132\cosh x = \sqrt {\dfrac{{13}}{4}} = \dfrac{{\sqrt {13} }}{2}

Now, we know,
tanhx=sinhxcoshx\tanh x = \dfrac{{\sinh x}}{{\cosh x}}
Substituting the values of sinh\sinh and cosh\cosh ,
tanhx=32132\tanh x = \dfrac{{\dfrac{3}{2}}}{{\dfrac{{\sqrt {13} }}{2}}}
Simplifying the right-hand side,
tanhx=313\tanh x = \dfrac{3}{{\sqrt {13} }}

Therefore, coshx=132\cosh x = \dfrac{{\sqrt {13} }}{2} and tanhx=313\tanh x = \dfrac{3}{{\sqrt {13} }}.

Note:
For hyperbolic trigonometric identities we use cosh2xsinh2x=1{\cosh ^2}x - {\sinh ^2}x = 1 whereas for normal trigonometric identities we use cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1. While solving such types of problems, students may get confused with all the trigonometric formulas, identities and properties.